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The effect of electrical conductivity on the domain evolution of semiconducting ferroelectrics is
investigated using a phase field model which includes the drift of space charges. Phase field simulations
show that the tail-to-tail 90◦ charged domain wall appears during the domain formation in the
semiconducting ferroelectrics at zero field, which is prohibited in common insulating ferroelectrics.
Due to the screening of polarization charges, the domain switching takes place through the motion
of head-to-head 180◦ charged domain wall in the semiconducting single-domain ferroelectrics subjected
to an electric field. Comparing to the insulating ferroelectrics, the semiconducting ferroelectrics have a
lower speed of domain evolution due to the decrease of mobility of charged domain walls. The response
of semiconducting ferroelectrics to a mechanical load is also found different from that of insulating
ferroelectrics.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Ferroelectric materials have been attracted much attention due
to their distinguished dielectric, ferroelectric and electromechan-
ical coupling properties, which are closely related to the domain
structures and domain evolution in the materials [1]. The depo-
larization field plays an important role in the formation of do-
main structures, and the strength is dependent on the screening
of polarization-induced charges in the materials. Ferroelectric ma-
terials are generally regarded as insulators which have no free
charge. However, a vast majority of the perovskite ferroelectrics are
actually wide-band-gap semiconductors [2,3]. The semiconduct-
ing ferroelectrics exhibit characteristic properties originated from
the drift and diffusion of free carriers. The screening of polariza-
tion charges could induce new properties and behaviors that differ
from the common insulating ferroelectrics [4–6]. In particular, the
charged head-to-head and tail-to-tail domain walls are metastable
in the insulating ferroelectrics [7,8] while they can stably exist in
the semiconducting one [4].

To understand the effect of free space charges on ferroelectrics,
many theoretical investigations have been performed in the frame-
work of Landau–Devonshire theory [9]. For instance, the effect of
space charges on the phase transition [10,11], polarization switch-
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ing [12–14] and fatigue [15] in ferroelectric thin films have been
predicted using the phenomenological theory. Most of the inves-
tigations make a priori assumption on either the profile of po-
larization [16–19] or free charges [20,21]. Without such priori as-
sumption, the evolution of polarization and space charges has been
investigated using the time-dependent Ginzburg–Landau model [2,
22,23]. The model successfully described the coupling between the
polarization and space charge, such as the formation of charge
double layers at the 90◦ domain walls [2] and the accumula-
tion of space charges near the superlattice interface [22]. Recently,
a time-dependent and thermodynamically consistent theory is pro-
posed to describe the evolution of space charges and polarization
in semiconducting ferroelectrics subjected to an external electric
field [24]. But the simulation is limited to the one-dimensional
and non-deformable ferroelectrics. To study the interactions be-
tween the charges and domain structures, two-dimensional phase
field simulations have been carried out [25,26]. A phase field study
has also been performed to understand the enhanced linear elec-
tromechanical response of semiconducting ferroelectrics with fixed
head-to-head and tail-to-tail charged domain walls [27]. Although
these studies have provided deep insights into the coupling be-
tween the space charges and polarization, the three-dimensional
study on the temporal evolution of charged domain wall and do-
main switching in the semiconducting ferroelectrics has not been
investigated so far. In this Letter, the effect of electrical conduc-
tivity on domain formation and polarization switching of semi-
conducting ferroelectrics is investigated by using a phase field
model.
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2. Phase field model

The electrical conductivity is explicitly included into the present
phase field model via Maxwell’s equations, which describe the drift
of free charges under an electric field in the semiconducting ferro-
electrics and have the form as [27]

Di,i = qF ,
∂qF

∂t
+ J i,i = 0, (1)

where Di , qF and J i (i = 1,2,3) are the electric displacement, free
space charges and electric current, respectively. Following Schwaab
et al. [28], the diffusion of free charges is ignored in the present
study. Therefore, the electric current is given by

J i = γ Ei, (2)

where γ and Ei are the electrical conductivity and electric field,
respectively. In addition to Maxwell’s equations, the following me-
chanical equilibrium equation must be satisfied for the deformable
ferroelectrics:

σi j, j = 0 (i, j = 1,2,3), (3)

where σi j is the elastic stress tensor.
In the phase field model of ferroelectrics, the temporal evo-

lution of the polarization of P = (P1, P2, P3) is described by the
time-dependent Ginzburg–Landau equation

∂ Pi

∂t
= −L

[
∂h

∂ Pi
− ∂

∂x j

(
∂h

∂ Pi, j

)]
(i, j = 1,2,3) (4)

where L is the kinetic coefficient, h is the electrical enthalpy den-
sity of the simulated system, and t is time. The electrical enthalpy
h is a function of the polarization Pi , the strain εi j , the polariza-
tion gradient Pi, j = (∂ Pi/∂x j), and the electric field Ei , which has
the form as [29]

h(Pi, Pi, j, εi j, Ei) = αi P 2
i + αi j P 2

i P 2
j + αi jk P 2

i P 2
j P 2

k

+ 1

2
ci jklεi jεkl − qijklεi j Pk Pl

+ 1

2
gijkl(∂ Pi/∂x j)(∂ Pk/∂xl)

− 1

2
κ0 Ei Ei − Ei P i . (5)

The first three terms represent the Landau energy, where αi is
the dielectric stiffness, αi j and αi jk are higher order dielectric stiff-
nesses. The fourth term denotes the elastic energy of the system,
where ci jkl are the elastic constants. The fifth term denotes the
coupling energy between the polarizations and the strains, where
qijkl are the electrostrictive coefficients. The sixth term is the gra-
dient energy, where gijkl are the gradient coefficients. The gradient
energy gives the energy penalty for spatially inhomogeneous po-
larization. The last terms are the electric energy density due to the
presence of electric field. It should be noted that the electric field
in Eq. (5) includes the external field and depolarization field. The
total electric field can be obtained through the electrical equilib-
rium equation (1). The external electric field is applied by setting
different electrical potentials to the surfaces of ferroelectrics. The
electric displacement and stress in Eq. (1) and Eq. (3) are related
to the electrical enthalpy as Di = −∂h/∂ Ei and σi j = ∂h/∂εi j , re-
spectively. A nonlinear finite element method is employed to solve
Eqs. (1)–(4). The finite element method is based on the following
weak form of governing equations

∫
V

{
∂

∂x j

(
∂h

∂εi j

)
δui − ∂

∂xi

(
∂ Di

∂t
+ J i

)
δφ

+
[

∂ Pi

∂t
+ L

(
∂h

∂ Pi
− ∂

∂x j

(
∂h

∂ Pi, j

))]
δPi

}
dV

= 0 (i, j = 1,2,3). (6)

Using the Gauss theorem, Eq. (6) can be expressed as
∫
V

{
∂h

∂εi j
∂
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=
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∂ Di
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+ J i
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ni

)
δφ

+ L

(
∂h

∂ Pi, j
n j
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]
dA. (7)

Based on the constitute equation of Di = k0 Ei + Pi and Eq. (2),
Eq. (7) can be expressed as
∫
V

{
∂h

∂εi j
δεi j −

(
k0

∂ Ei

∂t
+ ∂ Pi

∂t
+ γ Ei

)
δEi

+
(

∂ Pi

∂t
+ L

∂h

∂ Pi

)
δPi + L

∂h

∂ξi j
δξi j

}
dV

=
∫
S

(tiδui − J Sqδφ + LπiδPi)dA (8)

in which εi j = ∂ui
∂x j

, Ei = − ∂φ
∂xi

, ξi j = ∂ Pi
∂x j

, ti = ∂h
∂εi j

n j , J Sq = −(
∂ Di
∂t +

J i)ni , and πi = ∂h
∂ Pi, j

n j , are the strain, electric field, polarization

gradient, surface traction, surface current density and the gradient
flux of polarization. To solve the governing equations with finite
element method, the eight-node brick elements are employed for
space discretization. The detailed formulation of the finite element
method is given in Ref. [30]. The backward Euler scheme and New-
ton iteration method are employed for the time integration and
nonlinear iteration, respectively.

3. Simulation results and discussions

In the present study, we investigate the effect of electrical
conductivity on the domain evolution in the PbTiO3 single crys-
tal tetragonal nanodot. The electrical conductivity is set to 2.5 ×
10−8 (m�)−1, which has the same order as that in Ref. [28]. All
other material constants used in the simulation are the same as
those of Ref. [31] at room temperature. The material parameters
and variables are normalized using the same formula as that used
in the literature [31]. Based on the normalized formula, the nor-
malized time is t∗ = t|α1|L, in which t , |α1| and L are the real
time, the absolute value of α1 at room temperature, and the kinetic
coefficient of Eq. (4), respectively. Accordingly, the normalized elec-
trical conductivity is γ ∗ = γ /L. It is assumed that the semicon-
ducting ferroelectric nanodot is freestanding and open-circuited,
and has the tetragonal shape of 8 × 8 × 2 nm3. The corresponding
mechanical and electrical boundary conditions are σ jini = 0 and
(∂ Di/∂t + J i)ni = 0, respectively, where ni denote the component
of unit vector normal to the surfaces. The free boundary condition
of ∂ Pi/∂n = 0 is used for the polarizations on the surfaces [32]. In
the simulations, we employ 20 × 20 × 5 discrete brick elements to
model the tetragonal nanodots.



Download English Version:

https://daneshyari.com/en/article/8206023

Download Persian Version:

https://daneshyari.com/article/8206023

Daneshyari.com

https://daneshyari.com/en/article/8206023
https://daneshyari.com/article/8206023
https://daneshyari.com

