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We re-investigate the impact of possible scattering mechanism on quantum transport properties in
graphene. For Coulomb scatters, conductivity-carrier-dependence σ(n) away from the Dirac point can
vary from sub-linear to linear behavior with increasing the impurity concentration, which is consistent
with the existed experimental observations. For comparison, we also confirm that the resonant impurities
or ripples cannot produce a linear behavior conductivity-carrier-dependence. Therefore, our results
indicate that main scattering mechanism in samples with linear behavior of σ ∝ n comes from the
Coulomb charged impurities. While the sub-linear behavior in other samples may result from the above
three scattering mechanisms.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Graphene has been attracting a lot of attentions for its remark-
able properties and for its potential applications in nanoelectron-
ics [1]. To fabricate electronic devices with high mobility requires
a comprehensive understanding of the effect of disorder on the
transport properties of graphene. Thus the question what kind of
disorder mainly limits the mobility of charge carriers in graphene
has invoked an intense debate after the first transport measure-
ment [2,3]. There are two key findings in initial experiment [4]:
1) the conductivity σ increases linearly with the carrier density n
away from the Dirac point; 2) a minimal conductivity σmin seems
a quasi-universal value ∼ 4e2/h. Nevertheless, after that, many
groups found a sub-linear relationship between σ and n in their
samples and a sample (mobility) dependent value of minimal con-
ductivity [5–12]. The above discrepancy existed in the experiments
also needs a plausible understanding.

On the theoretical side, how to understand the transport prop-
erties in graphene is still an open question and no consensus has
been reached so far. For example, some authors [13] developed
a modified semiclassical Boltzmann theory to study the effects of
Coulomb scatters on transport properties. Nevertheless, quantum
interference effects due to potential fluctuation are missing so that
Boltzmann theory cannot capture the important graphene’s trans-
port behaviors near the Dirac point [3]. Adam et al. [14] showed
both the Boltzmann theory and the Landauer approaches lead to
σ ∝ n3/2 away from the Dirac point for the case of the correlated
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Gaussian potential. This, however, disagrees with all experimen-
tal observations reported so far [4–9] and previous Landauer-type
numerical calculations [15–18]. K. Nomura et al. [19] employed
a calculation in momentum-space to show that Coulomb scat-
ters are able to account for the linear dependence in graphene.
But the predicted universal behavior of conductivity with non-
sensitive to the strength of disorder is also at odds with many
experiments [5,6,8,9]. And the naive cut-off in momentum-space
is also deserved debate. Moreover, some alternative explanations
to experiment based on resonant impurities and ripples are also
proposed. T. Stauber et al. [20] proposed that resonant impuri-
ties can account for the sub-linear behavior of the conductivity
versus charge density: σxx ∝ n ln2 | E F

D |. M.I. Katsnelson et al. [21]
pointed out that the certain types of microscopic corrugations in
graphene can create a long-ranged scattering mechanisms similar
to Coulomb scatters and result in linear dependence of conductiv-
ity on charge carriers. But this conclusion is also under debate [3].
To sum up, although the main origin of scattering mechanism has
spurred a vast amount of theoretical work, to date, the answer re-
mains elusive and no theory has been able to render a full picture
of this puzzle [22–27].

In this Letter, we perform a large-scale calculation in real-
space based on the Kubo formula to study the effect of extrinsic
and intrinsic disorder on the transport properties of graphene.
The particular advantage of our method is unnecessary for mak-
ing any assumption about the underlying dynamical regime or
introducing any energy cut-off. In order to compare with exper-
iments, we restrict ourselves in the realistic range of impurities
concentration 1011 cm−2 < nimp < 1013 cm−2 and the available
carrier density n < 10 × 1012 cm−2 reported in experiments. Our
results confirm that, taking into account Coulomb scatters with

0375-9601/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physleta.2013.04.048

http://dx.doi.org/10.1016/j.physleta.2013.04.048
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:zhulingzu@gmail.com
http://dx.doi.org/10.1016/j.physleta.2013.04.048
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.physleta.2013.04.048&domain=pdf


1650 W. Zhu, B. Lv / Physics Letters A 377 (2013) 1649–1654

high impurity concentration can produce the linear carrier-density-
dependent conductivity in experiments. We also find that there
is a quantum interference regime near the Dirac point where the
conductivity will be enhanced by disorder owing to the quantum
interference effect. This finding gives a natural interpretation to
the existed experiments such as [4–8]. Furthermore, we compare
the Coulomb scatters with the resonant impurities and ripples. It
is found that the resonant impurities or ripples can only result in
a sub-linear dependence of conductivity on carrier density and rel-
ative low value of minimal conductivity < 4e2/h. We believe that
our results have clarified the different role of scattering mechanism
in transport properties in graphene.

The remainder of this Letter is organized as follows. In Sec-
tion 2 we introduce the model and method used for calculation.
In Section 3, we show our calculated conductivity for Coulomb im-
purities randomly distributed on graphene sheet. We focus on the
relationship between conductivity and carrier density and minimal
conductivity behavior. The related experimental observations and
derivation from previous theoretical predictions are also discussed.
In Sections 4 and 5, we draw some comparisons with the cases
with resonant impurities and ripples, respectively. Discussion and
conclusions are given in Section 6.

2. Model and method

Low energy excitations of graphene come from the π -electrons
that can be modeled by a tight-binding Hamiltonian on a honey-
comb lattice,

H =
∑
〈i j〉

ti j|i〉〈 j| + h.c. +
∑

i

εi |i〉〈i| (1)

where |i〉 denotes the π -electron state on site i. ti j = t0 = −2.7 eV
is the hopping energy between two nearest-neighbor sites. The
effects of ripples will change the distance between two nearest-
neighbor sites therefore changes the hopping energy ti j . εi = V (ri)

is the on-site energy mimic the potential induced by Coulomb im-
purities.

As noted before, here we focus on the numerical calculation of
the dc conductivity of disordered graphene system. Within linear
response the Kubo formula for the conductivity is written as:

σxx = 2h̄

π L2
lim
ω �→0

∞∫

−∞
dE

f (E) − f (E + h̄ω)

h̄ω

× Tr
[

ĵx Im Ĝ R(E) ĵx Im Ĝ R(E + h̄ω)
]

= 2π h̄

L2
lim
ω �→0

∞∫

−∞

f (E) − f (E + h̄ω)

h̄ω
J (E, E + h̄ω)dE (2)

where e is electron charge and h̄ is the Planck constant and L2

stands for area of graphene. f (E) is Fermi–Dirac distribution func-
tion and we only focus on zero temperature limit here. Ĝ R(E) =

1
E−H+i0+ is the retarded Green’s function of the disordered sys-

tem. ĵx = −i
∑

j,δ ti j(ex · δ|j〉〈j + δ| − ex · δ|j + δ〉〈j|) is the x com-
ponent of the current operator (defined through the Heisenberg
equation-of-motion for the position coordinate). J (E, E + h̄ω) =
Tr[ ĵxδ(E − Ĥ) ĵxδ(E + h̄ω − Ĥ)] is current–current correlation func-
tion. Eq. (2) involves a summation over matrix elements between
all one-particle eigenstates of Eq. (1), which can hardly be calcu-
lated for a reasonably large system. To overcome these compli-
cations we employ a two-dimensional kernel polynomial method
(KPM) [28–30]. In this approach, current–current correlation func-
tion J (E, E ′) can thus be expanded as a series of Chebyshev poly-
nomials Tl(x):

J
(

E, E ′) =
∑
n,m

∣∣〈n| ĵx|m〉∣∣2
δ(E − En)δ

(
E ′ − Em

)

≈
Nc∑

n,m

μnm gn gm Tn(Ẽ)Tm(Ẽ ′)

b2π2
√

(1 − Ẽ2)(1 − Ẽ ′ 2)

where coefficient μnm = Tr[ ĵxTn(H̃) ĵxTm(H̃)]. b = Emax − Emin
stands for band width and Ẽ = E/b (H̃ = H/b) is rescaled en-
ergy (Hamiltonian). Nc = 2000 is maximum number of polynomial
used to expand the J (E, E ′). gn are Jackson kernel factors [28]. The
Chebyshev polynomials Tm(x) satisfy relation:

T0(x) = 1, T1(x) = x,

Tm+1(x) = 2xTm(x) − Tm−1(x), m > 0.

Moreover, with the help of KPM method, we can also obtain the
density of states (DOS):

ρ(E) = − 1

π
Im G R(E) ≈

Nc∑
n

αn gn

bπ
√

1 − Ẽ2
Tn(Ẽ) (3)

where αn = Tr[Tn(H̃)].
In order to illustrate the exotic transport properties near the

Dirac point and reduce the finite-size effects, a very large lattice of
more than one million sites is used. In this Letter, all results are
performed on a lattice system Nx × N y = 1600×1600. To show the
results are robust against the finite-size effect, we also confirm the
results in Fig. 1 unchanged up to a larger system size Nx × N y =
4800×4800 (see below). In the calculations, the periodic boundary
conditions are imposed. To calculate the trace in μnm efficiently,
we also use stochastic evaluation method [31]. We have smoothed
the curves by averaging over 500 disorder realizations to obtain
averaged DOS and conductivity [32] (for system size 4800 × 4800,
the results are only averaged over 50 disorder samples).

3. Coulomb impurities

The effects of Coulomb scattering impurities are introduced
through random on-site energy εi = V (ri) in the second term of
Eq. (1). In our model we assume that random potential is gener-
ated by Ni randomly distributed Coulomb impurities at position rm

whose potential with an interaction range of ξ :

V (ri) =
Ni∑

m=1

αh̄v F

|ri − rm|e− |ri−rm |
ξ (4)

where h̄v F = 3ta/2 is the Fermi velocity and a is lattice constant.

α = e2

εh̄v F
is the effective fine structure constant used to charac-

terize the Coulomb interaction in graphene and α � 1 when the
graphene sheet is placed on a SiO2 dielectric substrate [33]. ξ con-
trols the interaction range of Coulomb scatters (ξ  a). We also as-
sume that the impurity in the substrate is d = 1 nm away from the
graphene plane. For a lattice of total N lattice sites, nimp = Ni/N is
the impurity concentration.

To have a better knowledge about the random potential used
in our calculations, Fig. 1(a) is the contour plot of a typical ran-
dom potential generated by randomly distributed Coulomb im-
purity of interaction range ξ = 20a, much larger than the lattice
constant so that random potential generated has a loop struc-
ture. Fig. 2(b) compares the total averaged DOS near the Dirac
point for two different impurity concentrations of Coulomb scat-
ters. The prominent dip at Dirac point for low impurities con-
centration (nimp = 3.8 × 1011 cm−2) is replaced by a smooth
minimum at a larger value for the case of high impurity con-
centration (nimp = 3.8 × 1012 cm−2). The particular enhanced
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