
Physics Letters A 377 (2013) 1328–1332

Contents lists available at SciVerse ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Non-Markovian dynamics of spin squeezing

Peng Xue

Department of Physics, Southeast University, Nanjing 211189, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 September 2012
Received in revised form 26 March 2013
Accepted 4 April 2013
Available online 8 April 2013
Communicated by P.R. Holland

Keywords:
Spin squeezing
Non-Markovian decoherence

We evaluate the spin squeezing dynamics of N independent spin-1/2 particles with exchange symmetry.
Each particle couples to an individual and identical reservoir. We study the time evolution of spin
squeezing under the influence of different decoherence. The spin squeezing property vanishes with
evolution time under Markovian decoherence, while it collapses quickly and revives under non-Markovian
decoherence. As spin squeezing can be regarded as a witness of multipartite entanglement, our scheme
shows the collapses and revivals of multipartite entanglement under the influence of non-Markovian
decoherence.
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1. Introduction

Quantum correlation has been playing a central role in quan-
tum information science and has also found many promising ap-
plications such as achieving interferometric [1–4] and enhancing
the signal-to-noise ratio in spectroscopy [5,6] beyond the stan-
dard quantum noise limit. The spin squeezed state is one kind
of quantum correlated states [7,8] with reduced fluctuations in
one of the collective spin components, which can be used to im-
prove the precision of atomic interferometers and atomic clocks. As
an important quantum correlation, entanglement is based on the
superposition principle combined with the Hilbert space structure,
while spin squeezing is originated from another fundamental prin-
ciple of quantum mechanics—the uncertainty principle. It has been
proved that the spin squeezing is closely related to and implies
quantum entanglement [3,5,9–11]. As a measure of multipartite
entanglement spin squeezing is relative easy to be operated and
measured.

To evaluate the potential application of quantum correlations
such as spin squeezing and entanglement, it is therefore essen-
tial to include a realistic description of noise in experiments of
interests [12]. The dynamics of entanglement in open systems has
been broadly studied [13]. A peculiar aspect of the entanglement
dynamics is the well-known “entanglement sudden death” phe-
nomenon [14–16] and recently the “sudden death” of spin squeez-
ing during a Markovian process has been investigated [17,18]. The
unidirectional flow of information in which the decoherence and
noise act consistently, characterizes a Markovian process. However,
there are some systems such as condensed-matter systems which
are strongly coupled to the environment and the coupling leads to
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a different regime where information also flows back into the sys-
tem from the surroundings, which characterizes a non-Markovian
process. Memory effects caused by the information flowing back
to the system during a non-Markovian process can temporarily in-
terrupt the monotonic increases or decreases of distinguishability
such as spin squeezing parameter. In this Letter we study the spin
squeezing dynamics of N independent spin-1/2 particles with ex-
change symmetry which are coupled to individual and identical
non-Markovian decoherence channels and show the collapses and
revivals of spin squeezing.

2. Spin squeezing definitions

We consider an ensemble of N two-level particles with lower
(upper) state |↓〉 (|↑〉). Adopting the nomenclature of spin-1/2 par-
ticles, we introduce the total angular momentum

�J =
N∑

j=1

�S j, (2.1)

where �S j
z = 1

2 σ̂
j

z = 1
2 (|↑〉 j〈↑| − |↓〉 j〈↓|). At this point, it is con-

venient to introduce the following definition of spin squeezing
parameter [5,19]

ξ2 = N(� J �n⊥)2
min

〈�J 〉2
. (2.2)

Here the minimization is over all directions denoted by �n⊥ , per-
pendicular to the mean spin direction �n = 〈�J 〉/|〈�J 〉|. If ξ2 < 1 is
satisfied, the spin squeezing occurs and the N-qubit state is entan-
gled.

There are also other definitions for spin squeezing parameters
which might show different sensitivities to the decoherence chan-
nels. We introduce another parameter defined by Tóth et al. [11]
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ξ ′2 = λmin

〈�J 2〉 − N/2
, (2.3)

where λmin is minimum eigenvalue of the matrix Γ = (N −1)Υ +C
with Υkl = Ckl − 〈 Jk〉〈 Jl〉 for k, l ∈ {x, y, z} the covariance matrix
and C = [Ckl] with Ckl = 〈 Jl Jk + Jk Jl〉/2 is the global correlation
matrix.

3. One-axis twisted spin squeezed states

Now we introduce one kind of spin squeezed states—one-axis
twisted spin squeezed states. Consider an ensemble of N spin-1/2
particles with exchange symmetry and assume that the dynamical
properties of the system can be described by collective opera-
tors Jα , α = x, y, z. The one-axis twisting Hamiltonian [20–22] is
an Ising-type Hamiltonian

Ĥ =
∑
j 
=k

1

4
f ( j,k)

(
I− σ̂

j
z
) ⊗ (

I− σ̂ k
z

)
, (3.1)

which involves all pairwise interactions with coupling constant
f ( j,k).

The one-axis twisted spin squeezed state [23–25] can be pre-
pared by the evolution of the above Hamiltonian

|ψt〉 = exp(−i Ĥt)|+〉⊗N =
∏
j 
=k

exp

[
− i

4
f ( j,k)tσ̂ j

z σ̂ k
z

]
|+〉⊗N ,

(3.2)

where |+〉 = (|↑〉 + |↓〉)/√2. If we choose the evolution time to
satisfy f ( j,k)t = mπ with m an integer, the state |ψt〉 is a product
state. If f ( j,k)t = (2m + 1)π/2, |ψt〉 becomes a graph state. For
0 < f ( j,k)t < π/2, |ψt〉 is a one-axis twisted spin squeezed state
characterized by spin squeezing parameter ξ (ξ ′).

The spin squeezing parameter ξ of the one-axis twisted spin
squeezed state with all coupling coefficients satisfying f ( j,k)t = α
takes this form

ξ2 = 1 − (N − 1)[√A2 + B2 − A]/4

cos2N−2 α
, (3.3)

where

A = 1 − cosN−2(2α), B = 4 sinα cosN−2 α. (3.4)

The mean spin direction for the one-axis twisted spin squeezed
state is

�n = (
cos(Nα), sin(−Nα),0

)
, (3.5)

and the orthogonal direction is

�n⊥ = (− cosφ sin(−Nα), cos φ cos(Nα), sin φ
)
. (3.6)

The minimum spin squeezing parameter with respect to α is ob-
tained ξ ∝ 1/N1/3 shown in Fig. 1.

The spin squeezing parameter with another definition ξ ′ of the
one-axis twisted spin squeezed state above takes the form

ξ ′2 = min(a,b)

(1 − 1/N)(1 + cosN−2 2α)/2 + 1/N
, (3.7)

where

a = 1 − (N − 1)
(√

A2 + B2 − A
)
/4,

b = 1 + (N − 1)
[(

1 + cosN−2 2α
)
/2 − cos2N−2 α

]
. (3.8)

Fig. 1. The plot of the spin squeezing parameter ξ for a one-axis twisted spin
squeezed state vs. the number of the qubits N optimized with respect to α.

4. Evolution of spin squeezing in the presence of decoherence

For a single qubit coupled to a noisy channel which is described
by a thermal reservoir, the evolution of this qubit is governed by
a general master equation of a Lindblad form

d

dt
χ = i[Ĥr,χ ] +Lχ, (4.1)

where the reference system is

Ĥr = �

2

N∑
j=1

σ̂
j

z (4.2)

with � is the strength of the external field. The optimal spin
squeezed states are eigenstates of the Hamiltonian [26]. Whereas,
the incoherent processes are described by the superoperator L:

Lχ = −b

2
(1 − s)[σ̂+σ̂−χ + χσ̂+σ̂− − 2σ̂−χσ̂+]

− b

2
s[σ̂−σ̂+χ + χσ̂−σ̂+ − 2σ̂+χσ̂−]

− 2c − b

8
[2χ − 2σ̂zχσ̂z], (4.3)

with σ̂± = (σ̂x ± iσ̂y)/2. For b = 0, c = γ and an arbitrary s, the
generator Eq. (4.3) describes the coupling between the qubit and
a dephasing channel. For s = 1/2 and b = c = γ , the qubit is cou-
pled to a depolarizing channel. Whereas, for s = 1 and b = 2c = γ ,
that is coupled to a decay channel (pure damping channel).

Equivalently, one can use the resulting completely positive
map E with χ ′ = Eχ to describe the decoherence channels

Eχ =
3∑

j=0

p jσ̂ jχσ̂ j, (4.4)

with χ a density matrix for a single-qubit state and
∑3

j=0 p j = 1.
These decoherence channels are of practical interests in quan-
tum information science. This class contains for example: (i) for
p0 = (1 + 3κ2)/4 and p1 = p2 = p3 = (1 − κ2)/4 with κ = e−γ t

E describing a depolarizing channel; (ii) for p0 = (1 + κ2)/2, p1 =
p2 = 0 and p3 = (1−κ2)/2 a dephasing channel. Finally, the decay
channel is described

Eχ = E0χ E†
0 + E1χ E†

2, (4.5)

with the Kraus operators E0 =
(

1 0
0 κ

)
and E1 =

(
0
√

1−κ2

0 0

)
[27].

The quantum master equations with the time-local structures
are also very useful for the description of non-Markovian pro-
cesses. Suppose we have a time-local master equation of the form

d

dt
χ = i[Ĥr,χ ] +K(t)χ, (4.6)
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