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We study the transmission of Dirac electrons through the one-dimensional periodic, Fibonacci, and Thue–
Morse magnetic superlattices (MS), which can be realized by two different magnetic blocks arranged in
certain sequences in graphene. The numerical results show that the transmission as a function of incident
energy presents regular resonance splitting effect in periodic MS due to the split energy spectrum.
For the quasiperiodic MS with more layers, they exhibit rich transmission patterns. In particular, the
transmission in Fibonacci MS presents scaling property and fragmented behavior with self-similarity,
while the transmission in Thue–Morse MS presents more perfect resonant peaks which are related to
the completely transparent states. Furthermore, these interesting properties are robust against the profile
of MS, but dependent on the magnetic structure parameters and the transverse wave vector.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The physical properties of graphene in the presence of inhomo-
geneous perpendicular magnetic fields have attracted considerable
attention, since its realization. The transport and bound states of
Dirac electrons in graphene were reported in various magnetic
structures involving single barrier [1], several barriers [2,3], and
quantum dots [4]. There also exist many theoretical works on pe-
riodic magnetic superlattices (MS) in graphene. Dell’Anna found
that the Fermi velocity at Dirac points is isotropically renormal-
ized in MS, in contrast to the case of electric superlattices, and
the spectrum and the nature of the states strongly depend on
the conserved longitudinal momentum and the barrier width of
MS [5]. The low-energy electronic structure of graphene under
a one-dimensional MS could be mapped into that of graphene un-
der an electric superlattice or vice versa [6]. The gapped states
were studied analytically in graphene under periodic magnetic and
electric fields [7]. We found that the transport has a general split-
ting rule through MS in graphene, of which the corresponding
vector potential is a periodic field, and the splitting is independent
of the MS profile [8]. In Refs. [9] and [10], the electronic prop-
erties of a magnetic Kronig–Penney superlattice with δ-function
barriers have been discussed in graphene, where electron trans-
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port could be understood in terms similar to light propagation in
periodic stratified media.

On the other hand, many works on the quasiperiodic sys-
tem [11] have been performed, which is an intermediate case
between periodic and disordered ones. The Fibonacci superlat-
tices and Thue–Morse superlattices are two typical quasiperi-
odic systems discussed widely. Those studies have shown that
the quasiperiodic systems have a highly fragmented energy spec-
trum, and their eigenstates can be critical states with self-similar
pattern which are neither extended nor localized [12,13]. Many
theoretical works on optical transmission, energy spectrum, and
density of states in various quasiperiodic systems have been re-
ported [12–17].

Recently, the transport properties through quasiperiodic electric
superlattices in graphene have been investigated [18–20]. Biswas
discussed the resonant tunneling through a Fibonacci superlattice
in bilayer graphene [18]. Sena et al. found that the spectrum of
quasibound states in Fibonacci graphene superlattice distributes as
a Cantor-like set by virtue of transverse wave vector [19]. How-
ever, the results on transport of Dirac electrons in quasiperiodic
MS are still lacking, and the magnetic field greatly affects the phys-
ical properties of Dirac electrons in comparison to the pure electric
field, especially for the Klein tunneling. In this work, the quasiperi-
odic MS in graphene are considered, involving Fibonacci MS and
Thue–Morse MS. The required magnetic profile can be produced
by ferromagnetic stripes located on top of the graphene layer, or
by virtue of other means [21]. The transmission of Dirac electron
through the quasiperiodic MS is discussed theoretically based on
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Fig. 1. The schematics of magnetic fields of building blocks P and Q indicated by
the black arrows, and the corresponding vector potentials indicated by shaded areas.

numerical results and compared with the ones in periodic MS. It
is found that the transmission as a function of incident energy is
fragmented and has common structure in quasiperiodic MS, and
the features are quite different from the results for quasiperiodic
electric superlattices in graphene [18–20]. The nature of these
features originates from the quasiperiodicity of the systems, anal-
ogous to the optical transmission spectrum in quasiperiodic pho-
tonic structures.

The Letter is organized as follows. In Section 2, we intro-
duce the periodic MS, Fibonacci MS, and Thue–Morse MS, and the
transfer-matrix method is used. We show the numerical results
and discussions in Section 3. Finally, we draw conclusions in Sec-
tion 4.

2. Model and method

The Fibonacci structure can be realized by juxtaposing the two
basic building blocks P and Q in Fibonacci sequence, and the
nth generation of the process Sn is given by the recursive rule
Sn = Sn−1 Sn−2, for n � 1, starting with S0 = P and S−1 = Q . The
Fibonacci generations are S1 = P Q , S2 = P Q P , S3 = P Q P P Q ,
etc. The total number of building blocks P and Q in each se-
quence is equal to the Fibonacci number Fn = Fn−1 + Fn−2 with
F0 = F−1 = 1. The Thue–Morse structure based on Thue–Morse se-
quence can be defined by the recursive relation Un = Un−1U n−1,
for n � 1, with U0 = P Q and U 0 = Q P , where U n is the com-
plement of Un . The Thue–Morse generations are U1 = P Q Q P ,
U2 = P Q Q P Q P P Q , etc., and the total number of building blocks
in each sequence is equal to 2n+1.

We shall consider the one-dimensional periodic and quasiperi-
odic MS perpendicular to the plane of graphene. The magnetic field
is assumed to be uniform along the y-direction and to vary along
the x-direction. The quasiperiodic Fibonacci MS and Thue–Morse
MS can be realized by two magnetic blocks P and Q arranged
in Fibonacci and Thue–Morse sequences, respectively. In addition,
three periodic MS are considered, i.e., (P )m , (P Q )m , and (P Q Q )m

with the period number m, where P , P Q , and P Q Q are the unit
cells of the three periodic MS, respectively. Fig. 1 depicts the pro-
files of magnetic blocks P and Q , each of which is made up of
two opposite magnetic δ-function barriers. In the Landau gauge,
both corresponding vector potentials A P and A Q have rectangu-
lar shapes with barrier widths dP/Q and well widths lP/Q . Thus,
all the vector potential fields are superlattices, and their structures
are the same as their corresponding MS, which play a key role to
the following transport properties.

At low energy, the electron in graphene could be described
by an effective massless Dirac equation with a linear energy dis-
persion. In the presence of a magnetic field perpendicular to the
plane, the equation reads as

[
v f σ · (p + eA(x)

)]
Ψ = EΨ, (1)

where the Fermi velocity v f ≈ 0.86 × 106 m/s, the pseudospin
matrix σ = (σx, σy) is the Pauli matrix, p = (px, p y) is the momen-
tum operator, and A(x) is the vector potential. For convenience,
the dimensionless units are introduced: lB = √

h̄/eB0, E0 = h̄v f /lB ,
B(x) → B0 B(x), A(x) → B0lB A(x), �r → lB�r, k → k/lB , and E → E0 E .
For a typical value B0 = 0.1 T, we have lB = 81 nm and E0 =
7.0 meV. The magnetic field and the corresponding vector poten-
tial are infinite and homogeneous along the y-direction, resulting
in the conservation of the transverse wave vector ky . The vector
potential A is constant in each region of the models. For given in-
cident energy E and transverse wave vector ky , the solution in jth
region of Eq. (1) could be written as Ψ j(x, y) = ψ j(x)eiky y with

ψ j(x) = a j

(
1

q j+ik j
E

)
eiq j x + b j

(
1

−q j+ik j
E

)
e−iq j x. (2)

Here, k j = ky + A j , q j is the longitudinal wave vector satisfying

q2
j + (ky + A j)

2 = E2. (3)

In order to calculate the transmission probability and the en-
ergy levels of quasibound states for periodic and quasiperiodic MS,
the transfer-matrix method is employed. Eq. (2) can be rewrit-

ten as ψ j(x) = G j H j

( a j

b j

)
, where G j =

(
1 1

(q j+ik j)/E (−q j+ik j)/E

)
and

H j =
(

eiq j x 0
0 e−iq j x

)
. Based on the continuity condition of the wave

functions at the interface x = x j between jth and ( j +1)th regions,

one can get:
( a j+1

b j+1

)
= M j

( a j

b j

)
, and M j = H−1

j+1(x j)G−1
j+1G j H j(x j).

Thus, the total transfer-matrix for MS with n regions can be writ-
ten as M = Mn−1 · · · M j · · · M1. Then the transmission probability
can be obtained from T = 1−|M21|2/|M22|2, and Mij is the matrix
element of M . Assuming that the eigenstates decay exponentially
in the vector potential barriers at both extremities of the MS, one
may get the condition for quasibound states [22]:

M22 = 0, (4)

in the energy region ky < E < (A + ky) where the eigenstates are
evanescent inside the barriers and propagating inside the wells.

3. Results and discussions

In this section, the transport properties of Dirac electron
through periodic MS, Fibonacci MS, and Thue–Morse MS in
graphene are studied numerically. The widths of barriers and
wells for both magnetic blocks are the same and fixed as dP/Q =
lP/Q = 0.5 in units of lB in the following results.

First, the transmission probability as a function of incident
energy for periodic MS (P )5, (P Q )5, and (P Q Q )5 is shown in
Figs. 2(a)–(c) at A P = 3.0 and A Q = 1.0. Obviously, the transmis-
sion exhibits a new kind of resonance, which is not the Klein
tunneling due to the suppression of the Klein tunneling in this
energy region. From Fig. 2(a) we can see that the transmission
exhibits 4-fold resonance splitting in (P )5, and the splitting is
(m − 1)-fold in (P )m [8]. Quite differently, for periodic MS (P Q )5

of which the unit cell is arranged with two magnetic blocks, the
transmission presents two resonant domains in the considered en-
ergy region, and there are 4-fold resonant peaks in each domain,
as shown in Fig. 2(b). Compared with (P )5, the resonant domains
in (P Q )5 become narrow, due to the narrowed energy band of
quasibound states which will be shown later. Fig. 2(c) shows that
the transmission presents three resonant domains in (P Q Q )5 of
which the unit cell is arranged with three magnetic blocks. Thus,
it can be concluded that the transmission would present n reso-
nant domains and (m − 1)-fold resonant peaks in each domain, for
the periodic MS of which the period number is m and the unit cell
is arranged with n magnetic blocks. Furthermore, the position of
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