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In quasi-one-dimensional systems with the intercalation-type doping, the dynamical response of dopant
ions can substantially affect the interplay of density-wave and superconducting instabilities. A generic
model system of Coulombically coupled Luttinger-liquid chains augmented by the interaction with the
ion displacements is exactly solved in the forward-scattering channel providing for the resulting system
excitations and electron correlations. For a jellium-like ion response, the effect of the bare electron–
electron repulsion is essentially canceled by the ions. Superconducting correlations can then be developed
due to a non-polarizational interaction with an additional phonon mode.

© 2013 Elsevier B.V. All rights reserved.

Ever since the original Little’s suggestion [1] of the exciton-
mediated superconductivity in specially designed macromolecules,
the physics of one-dimensional (1D) and quasi-1D conductors has
been a subject of extensive research that uncovered a rich area
of interactions-driven competing instabilities in these systems (see,
e.g., Refs. [2–8] for reviews). With modern progress in nanoscience,
the search for quasi-1D superconductivity is continuing in mate-
rials quite different from those envisioned by Little, such as in
bundles of carbon nanotubes. It has been argued [9], e.g., that sub-
stitutional doping of carbon nanotubes could lead to an increase
of the superconducting (SC) transition temperature followed by ex-
periments [10,11] claiming an onset of superconductivity at 15 K
(see a recent report [12] and references therein for other experi-
mental and theoretical developments).

Intercalation-type doping is an important practical means of
providing the electronic subsystem with (extra) charge carriers
without disrupting its chemical-bond skeleton. For quasi-1D sys-
tems, this doping is, for instance, a major route for controlling elec-
tric properties of conducting polymers [13]. High dopant concen-
trations may be achieved in different ways: by traditional chemical
volume doping [13] or by interfacial double layer charging [14],
particularly with ionic liquids [15,16]. Many intercalation-doped
systems exhibit qualitatively new properties such as superconduc-
tivity in graphite compounds [17,18], in fullerides [19] and in hy-
drocarbons [20]. In addition to supplying charge carriers, dopant
ions and intercalants in general may however also play other roles.

* Corresponding author. Tel.: +1 972 883 2834.
E-mail address: yuri.gartstein@utdallas.edu (Yu.N. Gartstein).

So the size of the dopant is known to critically affect the distance
between the fullerene molecules in alkali-doped fullerides [19].
Electron coupling with intercalant vibrations was attributed to be
the reason for higher SC transition temperatures in certain graphite
compounds [21] as well as in fullerides [22].

In this Letter we want to emphasize the role of the collec-
tive dynamics of dopant ions for quasi-1D electronic conductors
as a source of the ensuing long-range electron–ion Coulomb in-
teraction, similarly to how it occurs in 3D for the BCS model [3,
23,24]. We point out that the dynamical response of the dopants
may radically affect the interplay of the interactions by effectively
screening the long-range electron–electron repulsion and thereby
creating more favorable conditions for SC correlations. This repre-
sents another example of strong effects that may take place upon
embedding 1D electronic systems in 3D environments [25].

Our demonstration is based on the model of an anisotropic
3D system of Coulombically-interacting parallel Luttinger-liquid
chains introduced by Schulz [4,26] that will be supplemented by
their Coulomb coupling to the ionic subsystem. Being interested
only in the spin-independent long-range Coulomb interactions, we
limit our discussion here to the Coulomb forward-scattering pro-
cesses with small momentum transfer q (g2 = g4 processes in the
g-ology language [4,5,26]), for which the macroscopic expression
for the bare Coulomb interaction

V 0(q) = 4π/q2, q2 = q2
x + q2⊥, (1)

is valid. Here the 3D momentum (h̄ = 1) q = (qx,q⊥) is specified
via its components along, qx , and perpendicular, q⊥ , to the chains.
When screened by high-frequency dielectric polarization modes,
the Coulomb interaction becomes [26]
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V (q) = 4π

ε‖q2
x + ε⊥q2⊥

, (2)

allowing for anisotropy of the background dielectric constants ε‖
and ε⊥ .

The electronic part He of the electron–ion system Hamiltonian

H = He + Hi + Uei (3)

has been treated by Schulz [26]. Using the standard bosonization
method [4–6], it can be written as

He =
∑

q

εqb†
qbq + Uee, (4)

where electron–electron repulsion

Uee = e2

2V
∑

q

V (q)ρe(−q)ρe(q)

= ω2
p

16π v F

∑
q

|qx|V (q)B†
q Bq, (5)

is determined by electron densities ρ
†
e (q) = ρe(−q) and further

expressed via bosonic charge density operators [6]

bq = (bq↑ + bq↓)/
√

2

and their combinations

Bq = bq + b†
−q.

The spin density fluctuations are not interacting in this model and
do not need to be considered explicitly (that would correspond to
a term like the first term in Eq. (4)). Featured in Eqs. (4) and (5)
are the non-interacting electron energies

εq = v F |qx|, (6)

volume V of the system and the bare electronic plasma frequency
ω2

p = 4πnee2/m, that is convenient to use to quantify the 3D elec-
tron concentration ne . All Hamiltonians in this Letter are assumed
to be normally ordered, which is not shown explicitly.

Standard [5,6] exact diagonalization of the electronic Hamilto-
nian (4) by the Bogoliubov boson transformation [27] then results
in

He =
∑

q

E0(q)c†
qcq,

cq being the boson operators of the plasmon excitations with the
anisotropic dispersion

E2
0(q) = ε2

q +
(

qx

q

)2

ω2
p(q), (7)

where

ω2
p(q) = ω2

p
V (q)

V 0(q)
.

Except for the gapped uniform plasmon mode with q⊥ = 0, the
spectrum (7) exhibits a gapless acoustic E0(q) ∝ |qx| behavior at
qx → 0, see Fig. 1. The velocities of these modes are higher than
v F with the ever increasing values towards smaller q2⊥ . The re-
sult of the long-range electron–electron repulsion therefore is the
enhanced “tendency towards density-wave ordering, whereas the
superconducting fluctuations are suppressed” [26].

In the context of our further discussion, it is instructive to rec-
ognize that the spectrum (7) can be immediately derived as cor-
responding to the zeroes, εe(E0,q) = 0, of the frequency ω and
momentum q-dependent dielectric function

Fig. 1. Illustration of the dispersion of elementary excitations as a function of qx

for a fixed value of q⊥ in systems of: (a) electrons plus jellium-like dopant ions;
(b) electrons plus jellium-like dopant ions plus one non-polarizational dispersion-
less optical phonon mode of energy Ωop . The results shown here are calculated
with the bare Coulomb interaction, V (q) = V 0(q), and ωp/Ωp = 50. Note that the
values of system parameters for illustrative plots in this Letter have been chosen just
to assist in a better visual display of the discussed qualitative features. Solid lines
are used to show the resulting excitation branches, and dashed lines are for var-
ious “contributing” excitations as indicated, including non-interacting electron (6),
purely electronic plasmon (7) and phonon (11) spectra.

εe(ω,q) = 1 +
(

qx

q

)2 ω2
p(q)

ε2
q − ω2

(8)

reflecting the fact that the electrons can move only along the
x-axis. The dielectric functions we consider here refer to the renor-
malization of the electric potentials [3,6] and are related to the
generalized dielectric tensor [28] εi j(ω,q) as ε = εi jqiq j/q2.

We restrict our explicit treatment of the ionic subsystem here
to the case of the ionic “jellium” [23,24]. Only longitudinally po-
larized displacements of the ions contribute to the macroscopic
charge densities and need to be considered; the ionic subsystem
excitations in Eq. (3) are thus represented as a collection of longi-
tudinal phonons:

Hi =
∑

q

Ω(q)a†
qaq. (9)

In the jellium model, the kinetic energy of ions is augmented only
by the ion–ion Coulomb repulsion:

Uii = e2

2V
∑

q

V (q)ρi(−q)ρi(q)

= Ω2
p

16π

∑
q

q2

Ω(q)
V (q)A†

q Aq, (10)

where ionic densities ρ
†
i (q) = ρi(−q) and Aq = aq + a†

−q are com-
binations of the phonon operators. The bare ionic plasma fre-
quency Ω2

p = 4πnie2/M is convenient to use in Eq. (10) to quantify
the 3D ion concentration ni (singly-charged ions of mass M). Note
that the electron ne and ion ni concentrations need not be equal
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