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Bifurcation cascades in conservative systems are shown to exhibit a generalized diagram, which contains
all relevant informations regarding the location of periodic orbits (resonances), their width (island
size), irrational tori and the infinite higher-order resonances, showing the intricate way they are born.
Contraction rates for islands sizes, along period-doubling bifurcations, are estimated to be αI ∼ 3.9.
Results are demonstrated for the standard map and for the continuous Hénon–Heiles potential. The
methods used here are very suitable to find periodic orbits in conservative systems, and to characterize
the regular, mixed or chaotic dynamics as the nonlinear parameter is varied.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Almost all physical systems in nature are so complex that long
time predictions are nigh impossible. This is a characteristic of
nonintegrable chaotic systems whose effects are visible in celes-
tial mechanics, plasma physics, general relativity, quantum physics,
communications problems, hard beats, social and stock market
behaviors, weather forecast, among others. Thus, the precise de-
scription of the dynamics in nonintegrable systems is essential
for the understanding of nature. One intrinsic and fundamen-
tal phenomenon of such nonintegrable systems, is that realistic
stable orbits may vanish (or be born) when the nonlinear pa-
rameter varies. This can lead to a complicated behavior with a
cascade of new orbits, which is satisfactory described by a bifur-
cation diagram (see [1] and references therein). One example is
the period doubling bifurcation (PDB) cascade, well understood in
one-dimensional dissipative discrete systems containing one pa-
rameter, where the intervals in the parameter, between succes-
sive PDBs, tend to a geometric progression with an universal ra-
tio of 1/δ = 1/4.66, with δ being the Feigenbaum constant. For
two-dimensional dissipative systems, bifurcation cascades manifest
themselves inside periodic stable structures in the two parame-
ter space, which appear to be generic for a large class of systems.
Shrimp-like structures are one example, and appear in the dissi-
pative Hénon [2,3] and ratchet [4] discrete systems, in continuous
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models [5], among many others. Such structures allow an analysis
of geometric approximation ratios, and provide a very clear un-
derstanding of the dissipative dynamics. In contrast to dissipative
systems, for conservative nonintegrable systems the description of
bifurcations cascades is much more complicated. It is known [1,6],
that by magnifying stable points in the phase space, a mixture of
surrounding stable and unstable fixed points is found. This repeats
itself for every stable fixed point, as explained by the Poincaré–
Birkhoff theorem [7]. The intricate way higher order stable orbits
bifurcate, the islands around them vary and are interconnected,
and irrational tori behave as the nonlinear parameter of the system
changes, is an interesting problem that still deserves to be deeply
investigated. For 2 degrees of freedom area-preserving discrete
systems, the intervals in the parameter between successive PDBs,
tend to a geometric progression with a ratio of 1/δH ∼ 1/8.72 [1].
Results have also been extended to higher-dimensional systems
(please see [8–11] for more details).

This work uses convergence properties of the Finite Time Lya-
punov Exponent (FTLE) to explore the dynamics of conservative
systems in a mixed plot: initial condition (IC) versus the nonlin-
ear parameter. The location of stable orbital points is easily found
in such plot, and conservative bifurcation diagrams recognized to
have a generalized form, containing infinite sub-diagrams with all
rational/irrational tori from the periodic orbits (POs), independent
of the period. This is a nice complete description, and extension,
from an early work [12], done for another dynamical system. Re-
sults are remarkable and show the very complex, self-similar and
generic bifurcation structure in conservative systems with only
one parameter. They also suggest that contraction rates for the is-
lands sizes, along PDBs, approach the constant αI ∼ 3.9. A detailed
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Fig. 1. (Color online.) (a) Log–log plot of the FTLEs (starting from below) as a function of the iteration time for the six trajectories shown in the inset (starting from the fixed
point), and (b) phase space for K = 2.6.

numerical analysis is performed for the standard map, including
the use of the first recurrence times instead the FTLEs, to demon-
strate that results are independent of the method. A generalization
is shown for the continuous Hénon–Heiles potential.

2. Discrete model: The standard map

To start it is appropriate to present results using a well known
general model with wide applications, the Chirikov standard map-
ping, which is given by [13]:{

pn+1 = pn + (K/2π) sin(2πxn) mod 1,

xn+1 = xn + pn+1 mod 1.
(1)

K is the nonlinearity parameter and xn , pn are respectively posi-
tion and momentum at discrete times n = 1,2, . . . , N . It is known
that period-1 (shortly written per-1) fixed points are p1 = 1/2m
(m integer) and x1 = 0,±1/2. The point x1 = 0 is always unstable
while x1 = ±1/2 becomes unstable for K > 4. There exist also per-
1 fixed points related to accelerator modes [13] whose stability
condition is |2 ± K cos x1l| < 2, with K sin x1l = 2π l and l integer.
For higher periods there are primary families of periodic points
(which exist in the limit K → 0) and bifurcation families which
are born only for larger values of K (see [1] for more details).

3. Method: Finite time Lyapunov exponents

The key idea for the success of our proposal is the observation
that the numerical convergence of the FTLEs is distinct for different
ICs (same nonlinear parameter K ), even between regular trajecto-
ries. To make this clear, consider, for example, that the IC is exactly
on the stable (for K � 4) fixed point x0 = 1/2. It can be calculated
analytically that the corresponding Lyapunov exponent (LE), after
one iteration, is exactly zero. But now consider that we start with
an IC close to this fixed point, say x′

0 = 1/2 + �x0, which can be
an irrational regular torus close to x0. Assuming that (�x0)

2 ≈ 0.0,
the standard map can be linearized around x′

0 and the FTLE deter-
mined analytically, after n iterations, from the eigenvalues of the
composed Jacobian {(1,−K ), (1,1 − K )}n . This FTLE is plotted in
Fig. 1(a) as a black continuous line, and it converges exactly to zero
only when n → ∞. This means that ICs from stable tori around the
fixed point, take a longer time to converge exactly to zero than the
fixed point itself. This behavior can also be observed numerically
by determining the FTLEs using Benettin’s algorithm [14,15], which
includes the Gram–Schmidt re-orthonormalization procedure. We
use the six exemplary orbits shown in the inset of Fig. 1(a): the
stable fixed point, demarked with a cross, and the five irrational
tori around the fixed point. All trajectories are regular and have
LEs exactly equal zero for infinite times. However, when calculat-
ing the FTLEs for the distinct ICs, we observe that ICs closer to the

Fig. 2. (Color online.) FTLEs in the mixed space x0 × K for the standard map with
p0 = 0.0, a grid of 103 × 103 points and 104 iterations.

fixed point converge faster to zero. In Fig. 1(a), the decay curves
for the FTLEs versus times are plotted (starting from below) for the
six ICs shown in the inset (starting from the fixed point). As ICs are
taken more away from the periodic point, FTLEs converge slower
to zero. The magnitudes of the FTLEs between different irrational
tori are very small and not significant for any purpose. However,
for the IC exactly on the PO, the FTLE converges faster to zero than
other ICs around it. Essential to mention is that this is not a nu-
merical convergence artefact due to the numerical method, but an
analytical property, as shown above (continuous line in Fig. 1(a)).
Thus, even though such small FTLEs are insignificant to distinguish
between the irrational tori, they allow us to recognize where POs
are located in phase space, and to understand the very complex
and self-similar behaviors, which occur close to the POs as the
nonlinear parameter K changes. For larger times, FTLEs in Fig. 1(a)
continue to decrease linearly to zero, until the machine precision
is reached, and when the actual method cannot be used anymore.
Even though the method was explained using the standard map, it
is equally applied to other conservative dynamical systems.

4. The generalized diagrams

Using the properties explained in Section 3, a very clarifying
plot can be constructed, which allows us to recognize the bifur-
cation diagram in conservative systems in a simple way. Fig. 2
shows the FTLE (see colors bar) in the mixed space x0 × K with
p0 = 0.0. Black lines are related to those ICs for which the FTLEs
converge faster to zero and POs exist (this was checked explic-
itly for many black lines). Dark to light yellow points, around the
main black lines, are related to irrational tori and also define the
size of the corresponding island. These are regular trajectories for



Download English Version:

https://daneshyari.com/en/article/8206270

Download Persian Version:

https://daneshyari.com/article/8206270

Daneshyari.com

https://daneshyari.com/en/article/8206270
https://daneshyari.com/article/8206270
https://daneshyari.com

