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We used the statistical measurements of information entropy, disequilibrium and complexity to infer a
hierarchy of equations of state for two types of compact stars from the broad class of neutron stars,
namely, with hadronic composition and with strange quark composition. Our results show that, since
order costs energy, Nature would favor the exotic strange stars even though the question of how to form
the strange stars cannot be answered within this approach.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In the recent past, scientists from different areas have looked
at information theory to characterize physical and biological sys-
tems, their patterns and correlations. The idea is that a statistical
measure of complexity (to be defined precisely below) encodes the
self-organization of a system, and links the information stored in
it (or the logic/information entropy) to its “distance” to the state
of equilibrium probability distribution [1]. Recently, Sañudo and
Pacheco [2] first related such measures to an astrophysical object, a
white dwarf star, while Chatzisavvas et al. [3] applied these same
concepts to another type of compact stars, collectively known as
“neutron stars”, where matter is in the densest form known in Uni-
verse and is under even more extreme physical conditions, namely
supra-nuclear densities.

The importance of performing information theory studies on
compact astrophysical objects results from the fact that the very
nature of the matter in such extreme physical conditions is still
uncertain, and these studies can shed a new light on this subject
from a different point of view. In this Letter, we address “neutron
stars” made of nuclear hadronic matter and made of free quarks
(the self-bound strange stars, modeled in the context of MIT Bag
Model).
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The extension of these information concepts to astrophysical
macroscopic objects is not straightforward, since the forces in-
volved in the respective equilibrium configurations are very dif-
ferent from that ones in an atomic system. In atomic systems, the
factor that determines the self-organization is mainly the Coulomb
interaction and the Fermi exclusion principle. On the other hand,
in a (ordinary) neutron star, gravity, strong and weak interactions
all contribute. Finally, in a quark star the nuclear structure and
the nucleons themselves have been bypassed, and the truly funda-
mental degrees of freedom show up to form a self-gravitating ball
which is nevertheless bound by strong interactions, not gravity, al-
though the latter is still very important for the overall structure.
It is an open question whether the information quantities can be
used for a gross description of these equilibrium configurations.

Motivated by these considerations, we compared the informa-
tion and complexity stored in these two “neutron” stars of dif-
ferent microscopic composition, and found that these quantities
are comparable in general, but sensitive to the composition, be-
cause the latter determines the behavior of the radii of the stars
for the same mass. Since the value of the radius is also an impor-
tant feature for an observational identification [4,5], information
theory may link the formation and structure aspects.

2. Calculations and models

We used the statistical measure of complexity as defined by
López-Ruiz, Mancini and Calbet [1], as modified by Catalán et al.
[6]:

C = H × D,
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where H = exp(S) and S is the information entropy (or the in-
formation content of the system) in natural logarithmic units, D
is the disequilibrium (identified with the distance of the system
to its state of equiprobable probability distribution). In its original
definition, the expressions for S and D are the following

S = −
∫

ρ(r) ln
[
ρ(r)

]
dr,

D =
∫

ρ2(r)dr.

The quantity ρ(r) is the normalized probability distribution
that describes the state of the system. S describes the uncertainty
associated to that probability distribution while D stands for the
information energy (as defined by Onicescu [7]), or the quadratic
distance to the equiprobability.

In order to study our two types of compact objects in this way,
we need an analogue to the probability distribution. Because the
energy density distribution, ε(r) [erg/cm3], is related to the prob-
ability of finding a number of particles in a given location inside
the star, we use the energy density profile as the quantity to en-
ter in the integrals. However, in the case of the structure of our
stars, the gravitation is non-Newtonian and we must solve the
Tolman–Oppenheimer–Volkoff equations, or the equation of rela-
tivistic hydrostatic equilibrium of the star plus the mass integral,
both complemented by the equation of state which describes the
micro-physics (composition) of the stellar matter, to finally find
ε(r) = c2ρ(r), where c = 3 × 1010 cm/s is the velocity of light and
ρ(r) [g/cm3] is the matter density.

In this work we use the same approach of [3] to solve the TOV
equation: first we define the barred quantities as the dimension-
less variables scaling as follows

M(r) = M̄(r)M� ε(r) = ε̄(r)ε0,

P (r) = P̄ (r)ε0 ε0 = 1 MeV/fm3,

where M(r) is the mass of the star in solar units (M�), P (r) is the
pressure and ε0 is an energy density scale, which in turn provide
us the following form of the TOV equation and the mass equation

P̄ (r)

dr
= −1.474

M̄(r)ε̄(r)

r2

(
1 + P̄ (r)

ε̄(r)

)

×
(

1 + 11.2 × 10−6r3 P̄ (r)

M̄(r)

)(
1 − 2.948

M̄(r)

r

)−1

,

M̄(r)

dr
= 11.2 × 10−6r2ε̄(r).

Thus, the integrals to be evaluated are

S = −b0

∫
ε̄(r) ln

[
ε̄(r)

]
dr, (1)

D = b0

∫
ε̄2(r)dr, (2)

where ε̄ is the dimensionless energy density (which is just c2ρ/ε0)
and obtained from the solution of the TOV equation. The parame-
ter b0 = 8.89 × 10−7 km−3 is just a properly chosen quantity that
makes S and D dimensionless. The integration is performed from
0 to the radius R [km]. We now refer separately to the specific
cases of the hadronic star and the (strange) quark star, defined by
different micro-physical descriptions.

A first treatment of the pure hadronic case has been given by
[3], using a theoretically-motivated model equation of state. We
instead use the so-called SLy4 equation of state in its analytic
form [8] directly in the above form of the TOV equations, to ob-
tain the energy density profiles for each initial value of the central

Table 1
Parameters of the fit.

i ai (SLy) i ai (SLy)

1 6.22 10 11.4950
2 6.121 11 −22.775
3 0.005925 12 1.5707
4 0.16326 13 4.3
5 6.48 14 14.08
6 11.4971 15 27.80
7 19.105 16 −1.653
8 0.8938 17 1.50
9 6.54 18 14.67

pressure. Analytical representations of the equation of state are
preferred over the tabulated ones, because they avoid two major
problems of the latter: the ambiguity of the interpolation and im-
possibility of calculating the derivatives precisely. Furthermore, the
analytical form is constructed obeying all the thermodynamic rela-
tions [8]. A suitable form of the equation of state SLy4 is

ζ = a1 + a2ξ + a3ξ
3

1 + a4ξ
f0

(
a5(ξ − a6)

)
+ (a7 + a8ξ) f0

(
a9(a10 − ξ)

)
+ (a11 + a12ξ) f0

(
a13(a14 − ξ)

)
+ (a15 + a16ξ) f0

(
a17(a18 − ξ)

)
, (3)

where the coefficients are given in Table 1 and ξ = log(ρ/g cm−3),
ζ = log(P/dyn cm−2).

This is currently a popular choice for detailed studies of dense
matter and has all nuclear features of interest already built-in [9].
Another reason for choosing the SLy4 is that it allows maximum
mass around 2M� , a minimum value similar to the quark equation
of state discussed below.

The strange star models also need an equation of state describ-
ing the (self-bound) quark particles and their interactions. This is
notoriously more involved than in the nuclear phase, since decon-
finement is not yet properly understood. To calculate the informa-
tion entropy, the disequilibrium and the complexity for our model
of strange quark stars, we used one of the few analytical exact so-
lution of the Einstein equations (which is of course a solution of
the static TOV equation) for a spherically symmetric non-rotating
perfect fluid. This solution is the anisotropic expression first ob-
tained by Sharma and Maharaj [10] and studied by us in [11]. The
advantage of this very accurate model is that in this way we have
an analytical expression for the energy density that can be inte-
grated easily, namely

ε̄(r) = 1

3

ρcc2

ε0

3 + r2/r2
o

(1 + r2/r2
o )2

. (4)

In that expression, ρc is the central density and ro = ro(ρc) is a
parameter that controls the decay of the density profile. This ana-
lytical solution is obtained imposing the MIT Bag model for strange
quark matter equation of state

p = 1

3

(
c2ρ − 4B

)
, (5)

where B � 57.5 MeV/fm3 is the energy density of vacuum. This
simple expression (3) has been widely used because it readily cap-
tures the essential features of the deconfined phase. Crucial to
our considerations of self-boundness (that is, a bound star even
in the absence of gravitation [12]) is the existence and numeri-
cal value of the parametric vacuum energy density B , representing
non-perturbative confining interactions. It is easily shown that for
this massless quarks case
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