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We would like to thank all of the commentators for their insightful and positive reactions to our review paper [1]. 
Their comments touch on both theoretical and applied aspects of sub-exponential growth dynamics and the mecha-
nisms that generate them, and have greatly enhanced and broadened the discussion. Here we aim to further discuss 
key points raised by Brauer [2], Danon and Brooks-Pollock [3], Allen [4], Merler [5], Champredon and Earn [6], and 
House [7].

Brauer [2] underscores the flexibility of the generalized-growth model to capture the early transmission dynam-
ics of infectious disease outbreaks, particularly in situations where retrospective investigations are not sufficient to 
elucidate the underlying mechanisms. We agree with this assessment. In real epidemic settings, gaining a com-
plete understanding of the actual mechanisms that shape early epidemic growth could be particularly challenging 
in the absence of additional data to characterize contact patterns, population behavior changes, and transmission 
pathways (e.g., hospital vs. community transmission). This is further complicated when the epidemiology or trans-
mission mechanisms of the infectious disease in question have not been fully elucidated. Related to this point, Danon 
and Brooks-Pollock [3] argue for the application of data science approaches to further our understanding of the 
processes that shape epidemic outbreaks, which, in turn could lead to improved predictive models. We could not 
agree more with this suggestion. Mathematical epidemiology has made important strides in recent years precisely 
because new and better data sources are becoming available. These data sources include electronic records contain-
ing information about the health of individuals such as primary care visits, hospitalizations, and deaths. In addition, 
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non-traditional data sources such as digital data streams (e.g., social media, internet news reports) can contribute both 
to the early identification of emerging pathogen outbreaks [8] and to early estimates of key transmission parame-
ters [8,9].

Allen [4] expanded on our review of SIR models incorporating inhomogeneous mixing through power-law inci-
dence rates. In particular, Allen underscores the earlier application of these models to measles [10,11]. We appreciate 
this comment as it further highlights the early application of these relatively simple models. It is also worth pointing 
out that these simple models have found relatively few applications, compared to classical SIR models assuming linear 
incidence rates. A likely issue with nonlinear incidence SIR models is that of parameter identifiability: multiple com-
binations of parameter values could yield similar epidemic curves, which complicates the interpretation of power-law 
scaling parameters. As a technical point, the scaling exponents affecting the incidence rate of SIR models have not 
been mapped to a particular polynomial degree when the scaling exponent is below 1.0. It is only when the scaling 
exponent acts on the total number of cases (rather than disease prevalence) that the generalized growth model yields 
a closed form solution. In this special case, there is direct mapping between the deceleration of growth parameter to 
specific polynomial degrees representing the growth of case incidence.

Merler [5] highlights the need to better understand the factors behind early sub-exponential growth dynamics. 
He suggests that the variation in epidemic growth profiles across outbreaks could be related to the epidemiological 
characteristics of infectious diseases. For instance, some infectious pathogens are airborne but generate relatively low 
case fatality rates (e.g., influenza) while others are only transmitted via close contacts but could generate high case 
fatality rates in the absence of early treatment (e.g., Ebola). These epidemiological features could influence individual 
behavior, including the number and type of contacts made by individuals for a perceived level of risk [12]. Another 
important factor here is the role of cultural practices on individual behavior.

Champredon and Earn [6] share Merler’s interest in the potential mechanisms behind sub-exponential growth dy-
namics. Of particular note is their discussion on the role of demographic stochasticity and changes in case reporting, 
which may artificially generate sub-exponential growth dynamics in observed case data. We completely agree – these 
are important factors that should be given full consideration when characterizing and forecasting infectious disease 
outbreaks using early outbreak data. Indeed, stochasticity during the early epidemic phase could not only lead to 
early outbreak extinction (e.g., the index case does not generate secondary cases), but also generate variation in the 
early epidemic growth profile. We believe the generalized-growth model is particularly suited to capture this vari-
ation. Future work should examine the impact of stochasticity on shaping early epidemic growth and the extent to 
which the generalized-growth model is able to characterize this variation in different transmission contexts. Cham-
predon and Earn also provide comments based on their own application of the generalized-growth model (GGM) to 
the epidemic curve of the spring wave of the 2009 A/H1N1 influenza epidemic in Mexico [13], and find evidence 
of “hyper-exponential growth” (p > 1). This is surprising but may be attributed to an abrupt shift in transmission 
regimes in this particular epidemic: an initial phase characterized by the occurrence of sporadic cases for least 10 
disease generations, followed by a sustained epidemic growth period for several disease generations before the epi-
demic peaks. This shift in transmission patterns from low incidence to sustained epidemic growth could explain 
their estimates of p above 1.0. It is likely that the low incidence pattern covering the first 33 days of the epidemic 
curve could have been shaped by characteristics of the surveillance system and multiple importations of the dis-
ease possibly from a reservoir (Fig. 1). We also note that our application of the GGM has focused on the analysis 
of the ascending epidemic phase comprising 3–5 generations of the disease. For influenza, this observation window 
comprises 9–15 epidemic days if one considers a mean generation interval of 3 days. Accordingly, our fitting of 
the GGM to the sustained period of case growth of the epidemic which starts at day 33 of the time series yields 
r = 0.96 (95%CI: 0.73, 1.2) and p = 0.81 (95%CI: 0.81, 0.88), which is consistent with modest sub-exponential 
growth (Fig. 1). Whether hyper-exponential growth dynamics can be found in nature is an interesting area for future 
research.

Finally, House [7] offers some interesting theoretical arguments which could provide a general framework to 
characterize early epidemic growth patterns. We look forward to further developments of this framework and its ap-
plication to empirical data. Perhaps a next step could involve the simulation of early epidemic growth patterns using 
the generalized growth model. These simulations could in turn be used for testing the ability of this and other frame-
works to characterize differences in epidemic growth patterns, ranging from sub-exponential to exponential epidemic 
growth.
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