

Available online at www.sciencedirect.com

Physics Procedia

Physics Procedia 90 (2017) 435 - 439

Conference on the Application of Accelerators in Research and Industry, CAARI 2016, 30 October – 4 November 2016, Ft. Worth, TX, USA

High-Statistics β^+ /EC-Decay Study of ¹²²Xe

B. Jigmeddorj^{a1}, P. E. Garrett^a, C. A. Andreoiu^b, G. C. Ball^c, T. Bruhn^c, D. S. Cross^b, A. B. Garnsworthy^c, B. Hadinia^a, M. Moukaddam^{c,f}, J. Park^c, J.L. Pore^b, A. J. Radich^a, M. M. Rajabali^{c,g}, E. T. Rand^a, U. Rizwan^b, C. E. Svensson^a, P. Voss^b, Z. Wang^{b,c}, J. L. Wood^d, and S. W. Yates^e

^aDepartment of Physics, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G2W1, Canada ^bDepartment of Chemistry, Simon Fraser University, 8888 University Dr, Burnaby, British Columbia V5A1S6, Canada ^cTRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T2A3, Canada ^dSchool of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA ^cDepartment of Chemistry and Physics & Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA ^fDepartment of Physics, University of Surrey, Guildford, Surrey GU27XH, UK ^gDepartment of Physics, Tennessee Technological University, Cookeville, Tennessee 38505, USA

Abstract

Low-lying excited states of ¹²²Xe have been studied via the β^+ /EC decay of ¹²²Cs with the $8\pi \gamma$ -ray spectrometer at the TRIUMF Isotope Separator and Accelerator facility. The data collected have enabled the observation of new in-band transitions in the excited 0^+ state bands. In addition, the 2^+ members of the second 0^+ and third 0^+ state bands have been firmly confirmed by angular correlation analysis.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of the Scientific Committee of the Conference on the Application of Accelerators in Research and Industry

Keywords: Gamma-ray spectroscopy; Angular correlation analysis; Xe-122; Excited low-lying states; Beta decay; 0+ states

1. Introduction

This work is a part of systematic study of collectivity in even-even nuclei in the Z > 50 and N < 82 region. Nuclei

^{*} Corresponding author. Tel.: +1-519-824-4120x52261; fax: +1-519-836-9967. *E-mail address:* bjigmedd@uoguelph.ca

in this region exhibit a very smooth evolution of simple collective signatures, such as the energy ratio of the first 4⁺ state to the first 2⁺ state. However, the collectivity of excited low-lying states in this region is rather poorly characterized, especially for some Xe isotopes, because of a lack of spectroscopic data that provide measures of collective properties. Among the Xe isotopes, $^{124-132}$ Xe were studied by Alford, et al., (1979) and reveal that the third 0⁺ states in these isotopes are very strongly populated with (³He,n) reactions, suggesting a pairing vibrational structure influenced by proton sub-shell gaps. In other mass regions, such as Z < 50, strong population of 0⁺ states occurs in two-neutron transfer reactions, and is related to shape-coexistence where strong E0 transitions occur between the 0⁺ states and the ground state (J. Kumpulainen *et al.*, (1992) and M. Deleze et al., (1993)). Recent work by Radich *et al.*, (2015) on ¹²⁴Xe has established nearly identical quadrupole collectivity for the pairing-vibrational third 0⁺ band and the ground state band. The present work is focused on ¹²²Xe. The first result was the establishment of the 2⁺ band members of the second and third 0⁺ state bands with in-band transitions observed for the first time (Jigmeddorj *et al.*, (2016)). To confirm the spin of the new member states, angular correlation data from the ¹²²Cs decay experiment have been analyzed.

2. Experimental details

The experiment to study the β^+/EC of ¹²²Cs was performed at the TRIUMF-ISAC facility located in Vancouver, B.C., Canada. A 65-µA, 500-MeV proton beam from the TRIUMF main cyclotron was delivered to the ISAC facility and bombarded a thick natTa foil target. Products of the spallation reaction diffused to the surface of the Ta target foils, were ionized with a Re surface ion source, and passed through a magnetic mass separator that was set to select singly charged A=122 ions. The high-intensity beam of 1.1×10^7 ions/s of 122 Cs in the 1⁺ ground state with a 21.18 s half-life and 2.1x10⁶ ions/s of ¹²²Cs in the 8⁻ isomeric state with a 3.7 minute half-life was delivered to the centre of the $8\pi \gamma$ ray spectrometer and implanted into a FeO-coated mylar tape; details are given in Garrett et al., (2007), Garnsworthy and Garrett (2014), and Garnsworthy et al., (2015). The 8π spectrometer consists of 20 HPGe detectors surrounded by bismuth-germanate (BGO) Compton suppression shields. The free inner volume of the 8π has a diameter of 19.8 cm and can receive a variety of auxiliary detection systems including Pentagonal Array of Conversion Electron Spectrometers (PACES). PACES is an array of 5 liquid nitrogen cooled Si(Li) detectors for conversion-electron detection and was positioned upstream and aligned to the beam-spot position. The average source-to-Si-detector distance was 3 cm. More details of the 8π spectrometer are given by Garrett et al. (2015). Two sets of data were collected for short- and long-half-life decays in repeated cycles. Each set of data was collected in a mixed trigger mode involving scaled-down γ -ray and e⁻ singles, and γ - γ and γ -e⁻ coincidences. The Ge detector efficiency was measured using standard radioactive sources of 133 Ba, 152 Eu, 56 Co, and 60 Co. The data were sorted into γ -ray and e spectra, and γ - γ and γ - $e^{-\gamma}$ random-background-subtracted coincidence matrices. Analyses of the matrices and fitting of the spectra were performed with the Radware package (see Radford).

3. Results and discussions

As discussed in Jigmeddorj *et al.*, (2016), the data collected enabled the observation of more than a hundred new transitions and new levels including the third 0^+ state and the 2^+ band member of the third 0^+ state band. The third 0^+ state was suggested based on energy systematics (see Radich *et al.*, (2015)) but was not definitively identified. Also, the spin of the suggested 2^+ member of the third 0^+ band needed confirmation. To assign the spins of those states, angular correlation data have been analyzed.

3.1.Angular correlation analysis

The experiment was performed with the 8π spectrometer at TRIUMF-ISAC. The probability for observing coincident γ -rays at certain angles is given in terms of the Legendre polynomials as given in Eq. 1, where a_k is a coefficient dependent on spins of states involved in the cascade from which the γ -rays are emitted and the multipolarities of the γ -rays and $P_k(cos(\theta))$ is Legendre polynomials.

Download English Version:

https://daneshyari.com/en/article/8207789

Download Persian Version:

https://daneshyari.com/article/8207789

Daneshyari.com