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a b s t r a c t

The analysis is made on reflection of waves in thermoelastic micropolar medium. The medium is having
an additional property of viscosity, while studying waves the effect of micro-temperature is also been
considered. It is found that after reflection three longitudinal and three transverse waves propagate
through the medium. Reflected coefficients are calculated for each wave to examine deviation of reflected
waves. Results obtained theoretically are shown graphically against angle of incidence. It is analyzed that
effect of viscosity and micro-temperature reaches to its maximum level during intermediate values of
angle of incident.

� 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The linear theory of linear viscoelasticity is considered as very
important branch of Elastodynamics. It was observed by Freuden-
thal [1] that, most of the solids when subjected to dynamic loading
exhibit a viscous effect. Because of this viscous effect internal fric-
tion produces attenuation and dispersion. Initially, Biot [2,3] and
Bland [4] linked the solution of linear viscoelastic problems with
corresponding linear elastic solutions. A notable works in this field
were the work of Gurtin and Sternberg [6], and Ilioushin [7] offered
an approximation method for the linear thermal viscoelastic prob-
lems. Problems related with micropolar viscoelastic waves was ini-
tiated by McCarthy and Eringen [5]. They discussed the
propagation conditions and growth equations which govern the
wave propagation of waves in micropolar viscoelasticity. Some
sources are considered on study of viscoelastic materials are, Oth-
man and Fekry [8], they studied the effect of initial stress on gen-
eralized thermo-viscoelastic medium with voids and temperature-
dependent properties under Green-Naghdi theory. Kumar and
Choudhary [9] analyzed different wave problems in micropolar

visco-elastic thermo elastic solid. Effect of rotation on generalized
thermo-viscoelastic Rayleigh Lamb waves was discussed by
Sharma and Othman [10].

The theory of micro temperatures deals with the propagation of
the temperature wave in a rigid heat conductor which allows the
variation of thermal properties at a microstructure level. The the-
ory of thermodynamics for elastic material with inner structures
was developed by Grot [11] according to which the molecules pos-
sess micro-temperatures along with macro-deformation of the
body the micro temperatures depend homogeneously on the
micro-coordinates of the microelement. The experimental data
for the silicone rubber containing spherical aluminum particles
and for human blood presented by Riha [12] conform closely to
the predicted theoretical model of thermoelasticity for micro-
temperatures. Some authors recently invested some results related
with wave propagation [13–15].

Green and Naghdi developed three models for generalized ther-
moelasticity of homogeneous isotropic materials, which are
labeled as model I, II and III [16–18]. The nature of these theories
is such that when the respective theories are linearized, model I
[16] reduces to the classical heat conduction based on Fourier’s
law. The linearized versions of model II and III permit propagation
of thermal waves at finite speed. Model II, in particular, exhibits a
feature that is not present in the other established thermoelastic
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models as it does not sustain dissipation of thermal energy [18]. In
this model, the constitutive equations are derived by starting with
the reduced energy equation and by including the thermal dis-
placement gradient among other constitutive variables. Green
and Naghdi’s third model [17] admits the dissipation of energy.
In this model, the constitutive equations are derived by starting
with the reduced energy equation, where the thermal displace-
ment gradient and temperature gradient are among the constitu-
tive variables. The uniqueness of the solution of governing
equations for the GN type II model was established in [19]. Chan-
dra Sekharaiah [20] studied the one dimensional thermal wave
propagation in a half-plane based on the GN model. Some works
on reflection waves in a half-space is discusser (see, Refs. [21–
25]). Researchers as Othman and Song [26], Gupta and Rani [27]
and Bayones and Abd-Alla [28] studied different type of waves
propagating under different external influences. Kumar et al. [29]
explained plane waves propagation in microstretch thermoelastic
medium with micrtemperature. New features on waves reflection
with an external parameters as magnetic field, initial stress and
rotation has been investigated in (Refs. [30–36]).

In this article the authors are interested in the study of seismic
waves and their reflection from a surface of thermoelastic medium.
It is of great practical importance in geophysical investigations.
Seismic signals carry a lot of information about the internal struc-
ture of the earth and this information is of great help in exploration
of variable materials. We basically study the reflection of plane
waves at the free surface of the micropolar generalized thermoe-
lastic half space solid. The medium is naturally viscoelastic and
the effect of micro temperature is also been considered while ana-
lyzing the amplitude of reflected waves. Green Naghdi theory of
type III is considered to represent the heat waves conducting
through the medium. Reflected coefficients for both transverse
and longitudinal waves are obtained theoretically, analyzed and
finally represented graphically against the incident angle.

Formulation of the problem

Cartesian Coordinates ðx; y; zÞ are being selected to represent
the system of problem. Origin is on surface y ¼ 0 and z-axis direc-
ted along depth of solid. Basic governing equations for the problem
are,

q€ui ¼ ðkI þ lIÞuj;ji þ ðlI þ kIÞui;jj þ kIeijkuk;j � bT ;i ð1Þ

ðaI þ b0
I þ cIÞ ~rð~r:~uÞ � cI ~r� ð~r� ~uÞ þ kI ð~r� ~uÞ � 2kI ~u

� l1ð~r�wÞ ¼ jq
@2~u
@ t2

; ð2Þ

k6r2wþ ðk4 þ k5Þrðr:wÞ þ l1ð~r� ~uÞ � b
@w
@t

� k2w� k3rT ¼ 0;

ð3Þ

K�r2T þ Kr2 _T þ k1ð~r:~wÞ ¼ qCE
_T þ bT0 €ui;i; ð4Þ

GN-II can be obtained by adjusting K ¼ 0 in Eq. (4), the consti-
tutive equations are

rij ¼ kekkdij þ 2leij þ kðuj;i � eijk/kÞ � bTdij ð5Þ

mij ¼ a/l;ldij þ b/i;j þ c/j;i; qij

¼ �k4wl;ldij � k5wi;j � k6wj;i j; i; l; k ¼ 1;2;3: ð6Þ

Where aI;b
0
I; cI;lI; kI; kiði ¼ 1;2; . . . ;6Þ are constitutive coefficients

ui, rij; eij; mij are the components of displacement vector, of stress
tensor, strain tensor and couple stress tensor respectively, j is the

micro inertia moment, the mass density is q, the specific heat at
constant strain is CE, K

�; K are the thermal conductivity and the
material characteristic respectively of the theory. T0 is the reference
temperature, b ¼ ð3kI þ 2lIÞat where at are the coefficients of linear
thermal expansion for the material.

Assuming the viscoelastic nature of the material [10],

kI ¼ kþ @

@t
kv ; lI ¼ l 1þ @

@t
sv

� �
; kI ¼ kð1þ @

@t
svÞ;

aI ¼ a 1þ @

@t
sv

� �
; bI ¼ bð1þ @

@t
svÞ; cI ¼ c 1þ @

@t
sv

� �
;

where, sv is the sensitive part representing the viscosity.
Displacement and microrotation components are taken as,

~u ¼ ðu1ðx1; x3Þ;0;u3ðx1; x3ÞÞ and ~w ¼ ðw1ðx1; x3Þ;0;w3ðx1; x3ÞÞ
ð7Þ

Following are the non-dimensional parameters introduced for
the problem,

ðx0i;u0
iÞ ¼

w�

c1
ðxi;uiÞ; t0 ¼ w�t; /0

2 ¼ w�2j
c21

/2;w
�0 ¼ KI

qj
;

m0
ij ¼

w�k�i
c1kI

; w0
i ¼

c1
w� wi ð8Þ

The component of displacement functions ðu1;0;u3Þ and micro
temperature ðw1;0;w3Þ are connected with potential functions
R;w and G;H respectively, by the relation [24],

u1 ¼ @R
@x

� @w
@z

; u3 ¼ @R
@z

þ @w
@x

and w1 ¼ @G
@x

� @H
@z

;

w3 ¼ @G
@z

þ @H
@x

ð9Þ

Making use of Eqs. (7)–(9) in (1)–(4) we obtained the following
set of equations,

ðd1 þ d2Þr2 � @2

@t2

 !
R� d4T ¼ 0; ð10Þ

d2r2 � @2

@t2

 !
wþ d3/2 ¼ 0; ð11Þ

d5r2 � 2d3 � @2

@t2

 !
/2 þ d6r2wþ d7r2H ¼ 0; ð12Þ

K6r2 þ d8
@

@t
þ d10

� �
H � d9/2 ¼ 0; ð13Þ

ðK4 þ K5 þ K6Þr2 � d8
@

@t
� d10

� �
G� d11T ¼ 0; ð14Þ

e2 þ e3
@

@t
� @2

@t2

 !
T þ d12r2G� e1r2€R ¼ 0: ð15Þ

where,

d1 ¼ kþ l
qc21

; d2 ¼ lþ k
qc21

; d3 ¼ k
qx�2j

; d4 ¼ bT0

qc21
;

d5 ¼ c
jqc21

; d6 ¼ k
qc21

; d7 ¼ l1x�2

qc41
; d8 ¼ bc21

x� ; d9 ¼ l1c
4
1

x�4j
;

d10 ¼ K2c21
x�2 ; d11 ¼ K3c21T0

x�2 ; d12 ¼ K1

qCEc21T0
; e1 ¼ b

qCE
;

e2 ¼ K�

qCEc21
and e3 ¼ Kx�

qCEc21
:
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