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A B S T R A C T

Fractal calculus is very simple but extremely effective to deal with phenomena in hierarchical or porous media.
Its operation is almost same with that by the advanced calculus, making it much accessible to all non-mathe-
maticians. This paper begins with the basic concept of fractal gradient of temperature, i.e., the temperature
change between two points in a fractal medium, to reveal the basic properties of fractal calculus. The fractal
velocity and fractal material derivative are then introduced to deduce laws for fluid mechanics and heat con-
duction in fractal space. Conservation of mass in a fractal space is geometrically explained, and an approximate
transform of a fractal space on a smaller scale into its continuous partner on a larger scale is illustrated by a
nanofiber membrane, which is smooth on any observable scales, but its air permeability has to studied in a nano
scale, under such a small scale, the nanofiber membrane becomes a porous one. Finally an example is given to
explain cocoon’s heat-proof property, which cannot be unveiled by advanced calculus.

Introduction

Fractal geometry, fractal calculus and fractional calculus have been
becoming hot topics in both mathematics and engineering for non-
differential solutions. Fractal theory is the theoretical basis for the
fractal spacetime [1,2], El Naschie’s E-infinity theory [3], and life sci-
ence [4] as well. Fractional calculus was introduced in Newton’s time,
and it has become a very hot topic in various fields, especially in
mathematics and engineering for porous media [5–13], where classic
mechanics becomes invalid to describe any phenomena on the porous
size scale. For example, molecule diffusion in water is similar to a
stochastic Brownian motion in view of continuum mechanics, but the
diffusion follows fractal Fick laws if we observe the motion on a mo-
lecule scale. However, the fractional calculus is now such a mess that an
engineer has no ability to select a suitable fractional derivative for his
practical applications, most publications on fractional calculus are of
pure mathematics though some authors claimed possible applications,
and there are too many definitions on fractional derivative and new
ones arise everyday [14–18]. Among all fractional derives, He’s frac-
tional derivative [19–21] and the local fractional derivative [22,23] are
of mathematical correctness, physical foundation, and practical re-
levance. In 2012 the geometrical explanation of fractional calculus was
given [24], and in 2014 a tutorial review was published on fractional
calculus from its very beginning and physical understanding to prac-
tical applications [1].

Many researchers have already found the intrinsic relationship be-
tween the fractional dimensions and the fractional order [25]. This

paper will focus itself on the fractal calculus, a relatively new branch of
mathematics with easy understanding and ready applications.

Fractal calculus

The fractal calculus is relatively new, it can effectively deal with
kinetics, which is always called as the fractal kinetics [26–28], where
the fractal time replaces the continuous time. Nottale revealed that time
does be discontinuous in microphysics [29], that means that fractal
kinetics takes place on very small time scale.

The fractal derivative (Hausdorff derivative) on time fractal is de-
fined as [30–36]
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where σ is the fractal dimensions of time.
A more general definition is given as follows [30–36]
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where τ is the fractal dimensions of space.
There are other definitions for fractal derivative, and we will not

discuss all definitions, because some definitions are of only mathema-
tical interest.
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Fractal gradient

To elucidate the basic ideas of the fractal calculus, we begin with
the concept of gradient, which is widely used in mathematics and en-
gineering. For the one-dimensional case, the gradient of temperature
between two points A and B can be defined as
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where T represents temperature or other variables. The gradient can be
understood as the slope between two points:
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For three-dimensional case, the gradient is defined as
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The gradient is defined on a smooth space, and it becomes invalid
for discontinuous space, and a new definition on a fractal space is much
needed for practical applications.

In a fractal space as illustrated in Fig. 1, the gradient between points
A and B cannot be described using the above definition.

We define average gradient, initial gradient, and terminal gradient,
respectively, as follows
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For a continuous space, we have

∇ = ∇ = ∇∞T T T0 (9)

In a fractal space, however, the above equation becomes invalid,
and we define a fractal gradient as follows
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where LAB is the length of the broken line in Fig. 1. According to fractal
geometry, we have

=L kLAB
α (11)

where L is distance between A and B, α is the fractal dimension value. In
practical applications, hierarchical structure and porous medium can be
approximately considered as a fractal space [1,7–10,24], that means
there is a lowest hierarchy or minimal porous size. If the lowest hier-
archical distance is L0 (the side length of the shaded square in Fig. 1),
beyond which no physical meaning exists. For example, L0 is the na-
noporous size of a nanofiber member [37–39], or the minimal porous
size of a cocoon [40]. Using L0, Eq. (9) can be updated as
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where k0 is a constant.
When LAB tends to extremely small but larger than L0, we have

[1,41]
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We can define the fractal gradient in form [1,41]
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For the three dimensional case, the fractal gradient can be written in
the form
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where ∂
∂xα is the partial fractal derivative defined as [1,41]
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where α is the fractal dimensions in x-direction, L0 is the lowest hier-
archical distance.

The fractal derivative given in Eq. (16) has widely been used to deal
with porous or hierarchical structures [42–45] with great success.

A fractal space is always not isotropic, that means the fractal di-
mensions in x-, y- and z-directions are different. We replace Eq. (16) by
the following one
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where α β γ, , and are, respectively, the fractal dimensions in x-, y- and
z-directions,
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where L0x, L0y, and L0z are the minimal porous sized in x-, y- and z-
directions, respectively.

One-dimensional heat equation with a source in a fractal medium
can be written in the form
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where k is the material’s conductivity, Q0 is the heat source.
Three-dimensional heat equation with a source in a fractal medium

reads
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where kx, ky, and kz are, respectively, the material’s conductivity in x-,
y- and z-directions.

In order to establish laws in fractal media, it is necessary to in-
troduce the concept of fractal velocity, which is defined as follows

Fig. 1. Fractal gradient. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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