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a b s t r a c t

In the present work, accuracy method called, Riccati-Bernoulli Sub-ODE technique is used for solving the
deterministic and stochastic case of the Phi-4 equation and the nonlinear Foam Drainage equation. Also,
the control on the randomness input is studied for stability stochastic process solution.
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Introduction

Many areas of science interested in the nonlinear problems,
actually these models are reflected in interesting nonlinear deter-
ministic (stochastic) PDEs. These solutions might be essential and
significant for the explanation of some practical physical phenom-
ena. Therefore investigating new technique for deterministic case
to solve more complicated problems and also, we can develop
these methods for random case as in [1–6]. Thus, many new tech-
niques have been proposed, like as the tanh-sech technique [7–9],
Jacobi elliptic function technique [10–12], exp-function technique
[13–16], sine-cosine technique [17–19], homogeneous balance
technique [20,21], F-expansion technique [22–24], extended
tanh-technique [25–27], He’s variational approach [28,29] G0

G

� �
-

expansion technique [30–32], the Laplace transformation tech-
nique [34,35] etc.

We will use the Riccati-Bernoulli sub-ODE technique [1] for
extracting exact traveling wave solutions to NPDEs. The determin-
istic (stochastic) Phi-4 equation and deterministic (stochastic)

Foam Drainage model, are taken to illustrate the validity of this
technique. One very important feature, that this method gives
new infinite sequence of solutions, using a Bäcklund transforma-
tion. As result, as we will see in this work, we implemented the
Riccati-Bernoulli sub-ODE technique for finding the exact random
solutions of the stochastic Phi-4 equation and the nonlinear
stochastic Foam Drainage equation, when the problems have some
disturbance in its coefficients, this mean the parameters are
assigned random variables. To find the conditions for our method
in random case we will state the stability conditions.

The Phi-4 model [36] plays an important role in particle and
nuclear physics over the decades. So, exploration of exact traveling
wave solutions to this equation turns into an essential task in the
study of nonlinear physical phenomena. Thus, a lot of methods
have been established, for example, modified simple equation
method [37], the G0

G

� �
– [38] an so on. We will compare between

our result given in sequel with these results. We also consider
Foam Drainage model [39]. The drainage of liquid foams involves
the interplay of surface tension, gravity and viscous forces. The
study of this equation is very significant. Foam drainage is the flow
of liquid through plateau borders and intersections of four chan-
nels between the bubbles driven by gravity and capillarity. There
are so techniques have been presented, such as, the tanh method
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and Adomian decomposition method [33], the G0
G

� �
– [34,39] an so

on. We will compare between our result given in sequel with these
results, in detail see Appendix B. Finally, We will also show that our
method is efficacious, robust, general and much powerful than the
other proposed method, in more detail see Appendices A and B.

The rest of the paper is given as follows: In Section ‘‘Description
of the method” we describe the Riccati-Bernoulli sub-ODE method.
We also give a Bäcklund transformation of the Riccati-Bernoulli
equation. In Sections ‘‘Application”, we apply the Riccati-
Bernoulli sub-ODE technique to solve the Phi-4 model and the non-
linear Foam Drainage model. Additionally, in Section ‘‘Stochastic
perturbation” we can discuss this technique for the randomness
of solutions according to our problems. Finally, in Section ‘‘Conclu-
sions” we give the summary of our contribution and two
appendices.

Description of the method

Every nonlinear evolution equation can be expressed in follow-
ing form:

Pð/;/t ;/x;/tt;/xx; . . . :Þ ¼ 0; ð2:1Þ
where P is a polynomial in /ðx; tÞ and its partial derivatives. The
basic steps of this technique [40] are:

Step 1. By consideration the wave transformation

/ðx; tÞ ¼ /ðnÞ; n ¼ kðxþ vtÞ; ð2:2Þ
Eq. (2.1) transforms into the following ODE:

Hð/;/0;/00;/000; . . . ::Þ ¼ 0; ð2:3Þ
where H is a polynomial in /ðnÞ and, its total derivatives,while

/0ðnÞ ¼ d/
dn, /

00ðnÞ ¼ d2/
dn2

and so on.

Step 2. Let Eq. (2.3) has the following formal solution:

/0 ¼ a/2�n þ b/þ c/n; ð2:4Þ
where a, b, c and n are constants calculated in sequel. From Eq. (2.4),
one get

/00 ¼ abð3� nÞ/2�n þ a2ð2� nÞ/3�2n þ nc2/2n�1

þ bcðnþ 1Þ/n þ ð2ac þ b2Þ/; ð2:5Þ

/000 ¼ ðabð3� nÞð2� nÞ/1�n þ a2ð2� nÞð3� 2nÞ/2�2n

þ nð2n� 1Þc2/2n�2 þ bcnðnþ 1Þ/n�1 þ ð2ac þ b2ÞÞ/0; ð2:6Þ

Remark 1. Eq. (2.4) called the Riccati-Bernoulli equation. At ac – 0
and n ¼ 0, it’s a Riccati equation. At a – 0, c ¼ 0, and n – 0, it’s a
Bernoulli equation.

Solutions cases

The solutions of the Riccati-Bernoulli technique (2.4) given as
follow:

Case 1. For n ¼ 1, the solution is:

/ðnÞ ¼ leðaþbþcÞn: ð2:7Þ

Case 2. For n– 1, b ¼ 0 and c ¼ 0, the solution is:

/ðnÞ ¼ aðn� 1Þðnþ lÞð Þ 1
n�1: ð2:8Þ

Case 3. For n – 1, b– 0 and c ¼ 0, the solution is:

/ðnÞ ¼ �a
b

þ lebðn�1Þn
� � r

n�1
: ð2:9Þ

Case 4. For n – 1, a – 0 and, b2 � 4ac < 0, the solution is:

/ðnÞ ¼ �b
2a

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ac � b2

p
2a

tan
ð1� nÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ac � b2

p
2

ðnþ lÞ
 ! ! 1

1�n

ð2:10Þ
and

/ðnÞ ¼ �b
2a

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ac � b2

p
2a

cot
ð1� nÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ac � b2

p
2

ðnþ lÞ
 ! ! 1

1�n

ð2:11Þ

Case 5. For n – 1, a – 0 and, b2 � 4ac > 0, the solution is:

/ðnÞ ¼ �b
2a

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
2a

coth
ð1� nÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
2

ðnþ lÞ
 ! ! 1

1�n

ð2:12Þ
and

/ðnÞ ¼ �b
2a

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
2a

tanh
ð1� nÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
2

ðnþ lÞ
 ! ! 1

1�n

ð2:13Þ

Case 6. For n – 1, a – 0 and, b2 � 4ac ¼ 0, the solution is:

/ðnÞ ¼ 1
aðn� 1Þðnþ lÞ �

b
2a

� � 1
1�n

: ð2:14Þ

Here l be an arbitrary constant.
Step 3. Subrogate the derivatives of / into Eq. (2.3) gives an

algebraic equation of /, which uses to determining the value of
n. Comparing the coefficients of /i one gets a set of algebraic equa-
tions for a, b, c, and v . Hence we get the traveling wave solutions of
Eq. (2.1), by solving these equations and superseding n, a, b, c, v ,
and n ¼ kðxþ vtÞ into Eqs. (2.7)–(2.14)).

Bäcklund transformation

When /m�1ðnÞ and /mðnÞð/mðnÞ ¼ /mð/m�1ðnÞÞÞ are the solutions
of Eq. (2.4), we have

d/mðnÞ
dn

¼ d/mðnÞ
d/m�1ðnÞ

d/m�1ðnÞ
dn

¼ d/mðnÞ
d/m�1ðnÞ

ða/2�n
m�1 þ b/m�1 þ c/n

m�1Þ;

namely

d/mðnÞ
a/2�n

m þ b/m þ c/n
m

¼ d/mðnÞ
a/2�n

m�1 þ b/m�1 þ c/n
m�1

: ð2:15Þ

Integrating Eq. (2.15) once with respect to n, we get a Bäcklund
transformation of Eq. (2.4) in the form

/mðnÞ ¼
�cA1 þ aA2 /m�1ðnÞð Þ1�n

bA1 þ aA2 þ aA1 /m�1ðnÞð Þ1�n

 ! 1
1�n

: ð2:16Þ
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