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a b s t r a c t

We have computed new exact traveling wave solutions, including complex solutions of fractional order
Boussinesq-Like equations, occurring in physical sciences and engineering, by applying Exp-function
method. The method is blended with fractional complex transformation and modified Riemann-
Liouville fractional order operator. Our obtained solutions are verified by substituting back into their cor-
responding equations. To the best of our knowledge, no other technique has been reported to cope with
the said fractional order nonlinear problems combined with variety of exact solutions. Graphically, frac-
tional order solution curves are shown to be strongly related to each other and most importantly, tend to
fixate on their integer order solution curve. Our solutions comprise high frequencies and very small
amplitude of the wave responses.
� 2017 The Authors. Published by Elsevier B.V. This is anopenaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

Introduction

In recent years, nonlinear evolution equations (NLEEs) of frac-
tional order have acquired a significant place in applied mathemat-
ics and engineering. These equations constitute remarkable
applications in biomechanics, nonlinear optics, plasma physics,
fluid dynamics, solid state physics and many other areas of physi-
cal sciences. Numerous methods have been proposed to look for
exact solutions of NLEEs such as homogeneous balance method
[1,2], Jacobi elliptic function method [3], Backlund transformations
[4], functional variable method [5,6], tanh-function method [7–9],
truncated painleve expansion method [10], ðG=GÞ-expansion
method [11,12], sine-cosine method [13], Hirota bilinear transfor-
mation method [14], F-expansion method [15,16], simple equation
method [17] etc.

The Boussinesq-Like equations [18–21] are nonlinear evolution
equations of the form

utt � uxx � ð6u2ux þ uxxxÞx ¼ 0; ð1Þ

utt � uxx � ð6u2ux þ uxttÞx ¼ 0; ð2Þ

utt � uxt � ð6u2ux þ uxxtÞx ¼ 0; ð3Þ
and

utt � ð6u2ux þ uxxxÞx ¼ 0; ð4Þ
where, utt and uxx are second dissipative terms, uxxxx is known as
fourth spatial derivative and uxxxt and uxxtt being mixed spatio-
temporal derivative of the same order. The Eqs. (1)–(4) are linked
to the good Boussinesq equation but then less conformable to the
analytical techniques as these equations can no longer be fully inte-
grable [19]. The spatio-temporal terms in (1)–(3) improve the prop-
erties of dispersion relation likewise the regularized Boussinesq
equation. Above NLEEs appear in shallow water long waves, propa-
gation of waves in elastic rods, coupled electrical circuits, vibration
in nonlinear string, nonlinear lattice waves, dynamics of thin invis-
cid layers with free surface, and in the shape- memory alloys [13–
16]. Solutions of Boussinesq-like equations are used for applying
nonlinear water model to coastal and ocean engineering.

In this work, new exact traveling wave solutions of Boussinesq-
Like equations (1)-(4) with their fractional order interpretations
(related to the models discussed in [22,23] and several other
papers):

D2a
tt u� D2b

xx u� Db
xð6u2Db

xuþ D3b
xxxuÞ ¼ 0; ð5Þ
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D2a
tt u� D2b

xx u� Db
xð6u2Db

xuþ D2aþb
xtt uÞ ¼ 0; 0 < a;b 6 1 ð6Þ

D2a
tt u� Daþb

xt u� Db
xð6u2Db

xuþ Daþ2b
xxt uÞ ¼ 0; ð7Þ

and

D2a
tt u� Db

xð6u2Db
xuþ D3b

xxxuÞ ¼ 0; ð8Þ
are obtained by applying Exp-function method [24,25] with the
help of symbolic computation and is also applicable to differential
equations of fractional order in a straightforward and simple way
[26]. This method incorporates fractional complex transformation
[27–29] and modified Riemann-Liouville operator [30,31] for seek-
ing exact solutions of Boussinesq-Like physical models of fractional
order. Among some other key techniques as mentioned earlier, the
Exp-function method also gives exact solutions, and in most of the
cases, a variety of solutions for a wide range of nonlinear problems
of fractional as well as integer order. This makes the Exp-function
method advantageous over the numerical, approximate analytical
and semi numerical techniques. Further, some other studies related
to solution methods can be seen in [36–59].

Theorem 1 [32]. Suppose that uðrÞ and uðcÞ are respectively the
highest order linear term and the highest order nonlinear term of a
nonlinear ODE, where r and c are both positive integers. Then the
balancing procedure using the Exp-function ansatz

uðnÞ ¼
Pd

n¼�can expðnnÞPq
m¼�pbm expðmnÞ ; ð9Þ

leads to c ¼ d and p ¼ q;8r; s;X; k P 1.

Theorem 2 [32]. Suppose that uðrÞ and uðsÞuk are respectively the
highest order linear term and the highest order nonlinear term of a
nonlinear ODE, where r; s and O are all positive integers. Then the bal-
ancing procedure using the Exp-function ansatz leads to c ¼ d and
p ¼ q;8r; s; k P 1.

Theorem 3 [32]. Suppose that uðrÞ and ðuðsÞÞX are respectively the
highest order linear term and the highest order nonlinear term of a
nonlinear ODE, where r; s and O are all positive integers. Then the bal-
ancing procedure using the Exp-function ansatz leads to c ¼ d and
p ¼ q8r; s P 1;8X P 2.

Theorem 4 [32]. Suppose that uðrÞ and ðuðsÞÞXuðkÞ are respectively the
highest order linear term and the highest order nonlinear term of a
nonlinear ODE, where r; s, O and k are all positive integers. Then the
balancing procedure using the Exp-function ansatz leads to c ¼ d
and p ¼ q;8r; s;X; k P 1.

Modified Riemann-Liouville fractional derivative

To cope with the functions that are nondifferentiable, Jumarie
presented new formulations for taylor series of fractional sense
and introduced modified Riemann-Liouville definition [30]. He
made comparison with the Caputo-Djrbashian derivative [33,34],
that defines a fractional operator of order less than 1 through a
derivative which does not always work. Due to this reason, he pre-
sented modified Riemann-liouville derivative [35]. Since then,
modified Riemann-Liouville derivative has successfully been
applied to a good deal of fractional order problems including our
present work.

Jumarie’s modified Riemann-Liouville operator [30,31] is
defined as

Da
t f ðtÞ¼

1
Cð�aÞ

R t
0 ðt�sÞ�a�1ðf ðsÞ� f ð0ÞÞds; a<0;

1
Cð1�aÞ

d
dt

R t
0 ðt�sÞ�aðf ðsÞ� f ð0ÞÞds; 0<a<1;

½f ðnÞðtÞ�a�n
; n6a<nþ1;nP1:

8>>>>>><
>>>>>>:

ð10Þ
Important properties of this particular operator are as follows

Da
t t

c ¼ Cð1þ cÞ
ð1þ c� aÞ t

c�a; c > 0; ð11Þ

Da
t ðcf ðtÞÞ ¼ cDa

t f ðtÞ; ð12Þ

Da
t ðaf ðtÞ þ bgf ðtÞÞ ¼ aDa

t f ðtÞ þ bDa
t gðtÞ; ð13Þ

where, a, b and c are constants.

The Exp-function method

Consider the general nonlinear fractional partial differential
equation containing higher order derivatives as well as nonlinear
terms

P u;
@au
@ta

;
@bu
@xb

;
@cu
@yc

; . . .

� �
¼ 0; ð14Þ

where u is a function to be known and P is a polynomial of u and its
partial fractional order differential operators. By applying fractional
complex transformation [27–29]

u ¼ uðnÞ; where n ¼ k
xb

Cðbþ 1Þ þm
yc

Cðcþ 1Þ � l
ta

Cðaþ 1Þ ; ð15Þ

we convert (4) into the following nonlinear ODE

Qðu;u0;u00;u000; . . .Þ ¼ 0 ð16Þ
In Exp-function method, we assume that the traveling wave

solutions can be expressed in the form of (9) which can further
be written as

uðnÞ ¼ ac expðcnÞ þ � � � þ a�d expð�dnÞ
bp expðpnÞ þ � � � þ b�q expð�qnÞ : ð17Þ

(17) holds key role for finding analytic solution of given nonlin-
ear problems. To attain the values of c and p, we balance the linear
term of highest order in (16) with the highest order nonlinear
term. In the same way, to obtain the values of d and q, we balance
the linear term of lowest order in (16) with lowest order nonlinear
term.

Applications of Exp-function method

Fractional order Boussinesq-like equations

(I) By using complex fractional transformation [27–29]

u ¼ uðnÞ; n ¼ k
xb

Cðbþ 1Þ � l
ta

Cðaþ 1Þ ; ð18Þ

and modified Riemann-Liouville derivative, Boussinesq-like equa-
tion of the form (5) is converted into the ODE

l2u00 � ðu00 þ 12uu02 þ 6u2u00Þk2 � uð4Þk4 ¼ 0; ð19Þ
that is integrated twice (neglecting constant of integration) to
obtain

l2u� k2ðuþ 2u3Þ � k4u00 ¼ 0: ð20Þ
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