Accepted Manuscript

Fabrication and comparative study of magnetic Fe and α -Fe₂O₃ nanoparticles dispersed hybrid polymer (PVA+Chitosan) novel nanocomposite film

M.A. Hoque, M.R. Ahmed, G.T. Rahman, M.T. Rahman, M.A. Islam, Mubarak A. Khan, M. Khalid Hossain

PII: S2211-3797(18)30996-3

DOI: https://doi.org/10.1016/j.rinp.2018.06.010

Reference: RINP 1499

To appear in: Results in Physics

Received Date: 17 May 2018
Revised Date: 4 June 2018
Accepted Date: 5 June 2018

Please cite this article as: Hoque, M.A., Ahmed, M.R., Rahman, G.T., Rahman, M.T., Islam, M.A., Khan, M.A., Hossain, M.K., Fabrication and comparative study of magnetic Fe and α -Fe₂O₃ nanoparticles dispersed hybrid polymer (PVA+Chitosan) novel nanocomposite film, *Results in Physics* (2018), doi: https://doi.org/10.1016/j.rinp. 2018.06.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Fabrication and comparative study of magnetic Fe and $\alpha\text{-Fe}_2O_3$ nanoparticles dispersed hybrid polymer (PVA+Chitosan) novel nanocomposite film

M. A. Hoque ^a, M. R. Ahmed ^a, G. T. Rahman ^a, M. T. Rahman ^a, M. A. Islam ^a, Mubarak A. Khan ^b, M. Khalid Hossain * , ^b

Abstract

Incorporation of nanoparticles into polymer matrix allows the development of new features that differs from the pure materials. In this research, magnetic nanoparticles reinforced organic biodegradable polymer matrix based biocompatible nanocomposite films were fabricated. This work covered, synthesis of Iron (Fe) and Iron oxide (α-Fe₂O₃) nanoparticles by chemical reduction and sol-gel methods respectively, fabrication of Fe/Poly (vinyl alcohol) (PVA)/Chitosan and α-Fe₂O₃/PVA/Chitosan nanocomposites by solvent casting method, and evaluation and comparison of their mechanical properties to find the superior biocompatible nanocomposite. The X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDX) analysis confirmed the size, structure, morphology and formation of Fe and α-Fe₂O₃ nanoparticles. Magnetic study showed that, synthesized α -Fe₂O₃ nanoparticle possess better magnetic properties than the Fe nanoparticle. The fourier-transform infrared spectroscopy (FTIR) spectra confirmed the successful interaction of Fe and α-Fe₂O₃ nanoparticles with the polymers matrix. The Iron oxide dispersed (16.67 wt.%) nanocomposite α-Fe₂O₃/PVA/Chitosan showed highest tensile strength and elastic modulus that is respectively 45% and 40% higher than the PVA polymer alone. This novel nanocomposite may potentially be useful in various biomedical applications.

Keywords: magnetic nanoparticles; sol-gel and chemical reduction method; biodegradable polymer; biocompatible nanocomposite; mechanical properties; biomedical applications.

*Corresponding author: E-mail: khalid.baec@gmail.com

Cell phone: +880-1913-208669, ORCID ID: 0000-0003-4595-6367

^a Dept of Materials Science & Engineering, University of Rajshahi, Rajshahi-6205, Bangladesh

^b Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka-1349, Bangladesh.

Download English Version:

https://daneshyari.com/en/article/8208178

Download Persian Version:

https://daneshyari.com/article/8208178

<u>Daneshyari.com</u>