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A B S T R A C T

High transition temperature superconductors in cuprates exhibit the charge-density-wave fluctuations and the
ferromagnetic time-reversal-symmetry-breaking fluctuation in the polar Kerr rotation experiments. We de-
monstrate that they share the same root of origin, and the underlying mechanism also leads to the pseudogap
formation. The pseudogap formation, the charge-density-wave fluctuation, and the time-reversal-symmetry-
breaking fluctuation are the consequent phenomena of the correlation. They are the basic notions in strongly
correlated electron systems.

Introduction

Correlated electrons have exhibited many interesting phenomena
that deviate from the Fermi liquid theory and the theory of phase
transition. Taking the high transition temperature superconductors in
cuprates as an example [1], the pseudogap formation [2], charge-den-
sity-wave fluctuations observed in the scanning tunneling microscopes
and resonant soft X-ray scattering experiments [3–6], and ferromag-
netic time-reversal-symmetry-breaking fluctuations [7], occur simulta-
neously wide in the phase diagram. The onset of the time-reversal-
symmetry-breaking fluctuation coincides with formation temperature
of the pseudogap [7]. The charge-density-wave fluctuation resides well
in the pseudogap phase [8]. Those fluctuations have one common
property. Namely, there are no signatures of phase transition as they
occur. Their origins are mysterious. In this paper, we will demonstrate
that charge-density-wave fluctuation and time-reversal-symmetry-
breaking fluctuation are actually universal, if the correlated electrons
have the pseudogap phase.

Recently, one of us (CHC) proposed a theory of the pseudogap
formation [9]. The electrons weakly interacting with the U(1) gauge
field, originated from the spin Berry’s phase [10], open a gap-like
structure, when the gauge field acquires the mass. The mass acquisition
of the gauge field is due to the strong coupling with the anti-ferromag-
netic fluctuation, a remnant of the anti-ferromagnetism as the system is
doped. The basic assumption of this theory is that the spin anisotropy is
a relevant perturbation, so that the anti-ferromagnetic fluctuation can
be described by a phase field, → =

→
ϕ x t e( , ) q

iσ x t1 ( , ), where q is the cou-
pling between the gauge field and the anti-ferromagnetic fluctuation.
We emphasize that the anti-ferromagnetic fluctuation does not couple
to the elections directly. In two dimensions, the Kosterlitz-Thouless

(KT) transition takes place for the phase field at finite temperature.
Then, the anti-ferromagnetic fluctuation is absorbed by the gauge
transformation and becomes the longitudinal component of the gauge
field. Because the gauge field acquires mass, the interaction between
electrons becomes short-ranged. Due to the nature of the KT transition,
there are no conventional signatures of phase transitions. Translational
symmetry and the time reversal symmetry are well preserved.

At the first glance, it looks contradictory that the phase, preserving
both the translational and time reversal symmetries, hosts the charge-
density-wave fluctuation and the time-reversal-symmetry-breaking
fluctuation. We will show later that they are fluctuations and not the
ordering states. Electronic interaction mediated by the gauge field in-
fers that electrons exchange virtual particles of the pure imaginary
wave vectors. Nonetheless, due to the quantum fluctuation, gauge field
can be excited in the propagation modes of the real wave vector. The
charge-density-wave fluctuation is the direct consequence of the pro-
pagating gauge-electric field contributed from the longitudinal mode. On
the other hand, the ferromagnetic time-reversal symmetry-breaking
fluctuation originates from the propagating gauge-magnetic field of the
transverse modes.

This paper is organized as the following. We will discuss the effec-
tive interaction between electrons by integrating out the electronic
degree of freedom. The propagation modes of the gauge field can be
obtained by solving the classical equations of motion. Then, we con-
sider the classical motion of the electrons in the presence of the pro-
pagating gauge field. We will apply the current scheme to the high-Tc
superconductors. The presence of the anti-ferromagnetic fluctuation
and the emergence of the gauge interaction baptize the quantum cor-
relation. Once it is considered carefully, many of pseudogap phenom-
enology can be realized. The pseudogap formation, the charge-density-
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wave fluctuation, and the time-reversal-symmetry-breaking fluctuation
do not have the relation of causality. They are all the consequent
phenomena of the correlation.

Fluctuations

Effective theory of the gauge field

As the cuprates are doped, the anti-ferromagnetic ordering ceases,
the pseudogap phase is developed, and the gapless states are generated
in the nodal directions. It turns out that pseudogap structure is aniso-
tropic in the momentum space, which we believe that it is the sum of
the two causes: one mechanism to open an isotropic gap [9] and the
another mechanism to introduce the nodal quasiparticles [11]. In this
paper, we do not explain the phenomena associated with the nodal
quasiparticles. We focus on the consequences that relate to the pseu-
dogap. Let us consider the following Lagrangian density [9]
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where ψα is the electron variable with the spin index α, ( →a a,0 ) is the
gauge field, g is the coupling of the electrons to the gauge field, M0 and
M1 are the mass parameters, and = ∂ −D i qa0 0 0 and = − ∂ −D i qai i i are
the covariant derivative. In Eq. (1), we adopted the natural unit, where
ℏ and the speed of light c are set to be 1. It is equivalent to roughly set
197 eV· nm =1, which indicates that the mass of the gauge field de-
fines the length scale. In cuprates, the wavelength of the charge density
wave appears to be the only length scale, which implies =M M0 1.
Considering together the pseudogap magnitude, about 40meV [12], the
dimensionless gauge coupling g

m2

2
can be computed ∼ × −1.5 10 3 [9].

The weak-coupling nature allows us to compute the effective La-
grangian of the gauge field and the ϕ field perturbatively. Integrating
out the electronic degrees of freedom, the diagrams that renormalize
the gauge coupling are given in Fig. 1. Using the Green’s function of
electrons for the insulators [13,14], those diagrams are zero. Namely,
the gauge coupling is not renormalized by the electrons.

This result implies that the pseudogap magnitude and the onset
temperature are independent of the external magnetic field [15–19]. It
is because the external magnetic field couples only to the electrons, and
they have no contribution to renormalize the gauge coupling and the
mass of the gauge field.

Having integrated out the electron degrees of freedom, the classical
equations of motion of the gauge field and the =ϕ eq

iσ1
field can be

derived.
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The Hamiltonian density can be also computed.
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where
⎯→⎯

= −∇
→

−∂ →E a at0 is the gauge-electric field and
⎯→⎯

= ∇
→

× →B a is
the gauge-magnetic field. Solving Eq. (2) in the pseudogap phase,
where the expectation value of σ vanishes, we obtain
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There are two solutions in Eq. (4). The longitudinal mode has the dis-

persion relation = +ω k ML
M
M L

2 2
1
21

2

0
2 , and the transverse mode has the

dispersion relation = +ω k MT T
2 2

1
2.

Fluctuation of the density modulation

In the high temperature phase, the →ϕ x t( , ) field is fluctuating. The
gauge field is massless containing only the transverse mode. In the
pseudogap phase, the →ϕ x t( , ) field picks up a quasi-long-ranged order
through the Kosterlitz-Thouless transition and becomes the longitudinal
mode of the gauge field via the gauge transformation [9]. Interestingly,
the longitudinal mode has only

⎯→⎯
E field and no

⎯→⎯
B field. Excited by the

quantum fluctuation, the
⎯→⎯
E field gives the non-trivial dynamics to the

electrons. Without losing generality, we consider the standing-wave
solution and take the x direction as the longitudinal direction,

=a A e ω tcos( )ik x
L0 0 L and ̂→ = −

−
a A e ω t xsin( )ik ω

ω M
ik x

L0
L L

L
L

2
1
2 , where A0 is the

strength of the quantum fluctuation, and its magnitude will be de-
termined shortly. The energy density of the longitudinal mode can be

computed = + M( )L
A M

k4 0
2

L

0
2

0
4

2E . Likewise, the energy density of the

transverse mode can be computed = +k M( )T
A

T4
2

1
21

2
E , if

̂→ =a A e ω t ycos( )ik x
T1 T , where A1 is the strength of the quantum fluc-

tuation.
Apparently, the longitudinal mode and the transverse mode have

very different characters. From their energy density, the longitudinal
mode favors a big kL, and the transverse mode favors a long wavelength
kT . Therefore, the

⎯→⎯
E field modulation of the longitudinal mode must be

in the lattice scale, and the
⎯→⎯
B field of the transverse mode favors the

uniform distribution. As we will see later, the former is the driving force
of the charge-density-wave fluctuation. Driven by the longitudinal
mode, the electrons acquire the kinetic energy to form the orbital

Fig. 1. Feynman diagrams to compute the effective Lagrangian of the gauge field, that is proportional to f fμν μν in the long wavelength limit.
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