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A B S T R A C T

This study presents a study of equilibrium points, periodic orbits, stabilities, and manifolds in a rotating plane-
symmetric potential field. It has been found that the dynamical behaviour near equilibrium points is completely
determined by the structure of the submanifolds and subspaces. The non-degenerate equilibrium points are
classified into twelve cases. The necessary and sufficient conditions for linearly stable, non-resonant unstable
and resonant equilibrium points are established. Furthermore, the results show that a resonant equilibrium point
is a Hopf bifurcation point. In addition, if the rotating speed changes, two non-degenerate equilibria may collide
and annihilate each other. The theory developed here is lastly applied to two particular cases, motions around a
rotating, homogeneous cube and the asteroid 1620 Geographos. We found that the mutual annihilation of
equilibrium points occurs as the rotating speed increases, and then the first surface shedding begins near the
intersection point of the −x axis and the surface. The results can be applied to planetary science, including the
birth and evolution of the minor bodies in the Solar system, the rotational breakup and surface mass shedding of
asteroids, etc.

Introduction

Space missions to minor bodies [1–5], such as asteroids, comets, and
satellites around planets in the solar system, as well as the discovery of
binary asteroids, make the dynamical behaviour in the vicinity of non-
spherically shaped bodies (such as a massive inhomogeneous straight
segment) a subject of increasing interest [6,7]. Some space missions
consider flying a spacecraft around an asteroid and even landing on its
surface [8], leading importance to the study of the dynamics in the
potential field of an asteroid. In addition, the dynamics of a large-mass-
ratio binary asteroid [9] that can be modelled as a massless particle
flying around a large and irregularly shaped body (such as Ida and
Dactyl, [10]) is also relevant to research concerning the motion near an
irregularly shaped body.

The classical method of modelling celestial bodies is to expand the
gravity potential using the Legendre polynomial series [11]; this
method can provide a good approximation to nearly spherically shaped
celestial bodies when the series is sufficiently long [12]. However,
many minor bodies, such as asteroids, comets, and satellites around
planets, have irregular shapes. For space missions to minor bodies, it is
necessary to calculate the gravitational field of these irregular-shaped
bodies. However, the method of the Legendre polynomial series does

not converge at certain points [13,14] or regions [15]. Several methods
are used to eliminate this difficulty.

Werner [16] developed a method that uses a polyhedron to model
irregularly shaped bodies such as asteroids, comet nuclei, and small
planetary satellites and then applied this method to calculate the
gravitational field of the inner Martian satellite Phobos. Subsequently,
the polyhedron method was applied to several asteroids, including as-
teroids 4769 Castalia [17], 4179 Toutatis [18], 216 Kleopatra [19–25]
and the binary near-Earth asteroid (66391) 1999 KW4 [26–28].

However, the polyhedron model contains many free parameters and
is highly complex; some simply shaped models may also yield good
approximations for some bodies [13]. That is, although the polyhedron
model offers higher precision for quantitatively analysing and com-
puting the dynamical behaviour in the vicinity of some asteroids, the
qualitative analysis of the dynamical behaviour in the vicinity of certain
asteroids still may be achieved by considering simply shaped bodies.
Thus, Elipe and Lara [13] have used a finite straight segment to study
the equilibria, periodic-orbit families, bifurcations and stability regions
in phase space in the vicinity of asteroid 433 Eros. Broucke and Elipe
[29] have discussed the potential, periodic-orbit families and bifurca-
tions in the potential field of a solid circular ring. Blesa [14] has pre-
sented several families of periodic orbits in the plane of a triangular
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plate and a square plate. Alberti and Vidal [30] have calculated the
potential of a homogeneous annulus disk and have studied the orbital
motion near the disk. Fukushima [31] has derived the acceleration of a
uniform ring or disk. Liu et al. [32] have investigated the locations and
linear stability of equilibria, periodic orbits around equilibria and het-
eroclinic orbits in the gravitational field of a rotating homogeneous
cube. Li et al. [33] have investigated the locations and linear stability of
equilibrium points as well as periodic orbits around equilibrium points
in the vicinity of a rotating dumbbell-shaped body. These simply shaped
bodies and potential fields, including the logarithmic gravity field [34],
the straight segment [6,8,13,35], the solid circular ring [29,36], the
triangular plate and the square plate [14], the homogeneous annulus
disk [30,31], the homogeneous cube [32,37–39], the dumbbell-shaped
body [33], the classical rotating dipole model [40–42], and the dipole
segment model [43] are all plane-symmetric. The relative equilibria of
spacecrafts in the second degree and order-gravity field [44,45] are
different from the equilibria in the above studies. The second degree
and order-gravity field is also a rotating plane-symmetric potential
field. The relative equilibria of spacecrafts include the equilibria of the
position and the attitude, and the position is also the relative equilibria
in the plane-symmetric potential field.

In this work, we are interested in the study of the dynamics of orbits
in a rotating plane-symmetric gravitational field (unless explicitly
stated otherwise, all discussions concern the dynamics in this type of
gravitational field), including equilibrium points, periodic orbits, and
manifolds. The dynamical behaviours in the xy plane and the z axis are
decoupled for the plane-symmetric case, and the topological classifi-
cations for the plane-symmetric case are different with the general
cases. Thus we focus on the plane-symmetric case in the current study.

The linearised equations of motion relative to an equilibrium point
are derived and investigated in Section “Equations of motion”.
Furthermore, the characteristic equation of equilibrium points is pre-
sented. In Section “Periodic orbits and submanifolds near equilibrium
points”, the structure of the submanifolds and subspaces near an
equilibrium point are studied, which fixes the motion state near the
equilibrium point. It is found that there are twelve cases for the non-
degenerate equilibrium points in the plane-symmetric potential field of
a rotating plane-symmetric body. The necessary and sufficient condi-
tions for linearly stable, non-resonant unstable and resonant equili-
brium points are presented. If the rotating speed varies, two non-de-
generate equilibria may collide and change to one degenerate
equilibrium point and then annihilate each other.

The theory developed in this study is then applied to the motion in
the gravitational potential of a rotating homogeneous cube and asteroid
1620 Geographos [42] in Section “Applications”. In the gravitational
potential of a rotating homogeneous cube, it is found that there are two
families of periodic orbits on the xy plane near equilibrium points E1,
E3, E5 and E7, and there is only one family of periodic orbits on the xy
plane near the equilibrium points E2, E4, E6 and E8. While the rotation
speed of asteroid 1620 Geographos varies, the number of equilibrium
points will change from five to three to one. The positions of mutual
annihilation of equilibrium points are inside the body of asteroid 1620
Geographos. The results can be applied to the scientific research of the
birth and evolution of the Solar System and its minor bodies [46,47],
the rotational breakup of asteroids and comets [48], as well as the
surface mass shedding of asteroids [49] in the future Human mission to
asteroids [48,50].

Equations of motion

Equations of motion in the arbitrary body-fixed frame

The potential field of a rotating plane-symmetric body satisfies

= −U x y z U x y z( , , ) ( , , ), (1)

where x y z( , , ) is the coordinates in the body-fixed coordinate system,

and U is the potential of the body.
Consider the motion of a massless particle in the potential field of a

rotating plane-symmetric body; the dynamical system is a Hamiltonian
system. The equations of motion of the particle relative to the body can
be written as

+ × + × × + × + ∂
∂

=Ur ω r ω ω r ω r r
r

¨ 2 ̇ ( ) ̇ ( ) 0,
(2)

where r is the body-fixed vector from the centre of mass of the body to
the particle, ω is the rotational-angular-velocity vector of the body
relative to the inertial frame of reference, and ∂

∂
U r

r
( ) is the gradient of the

potential. If =ω 0, then the body is fixed and has no rotation.
The Jacobian integral H is defined as

= − × × +H Ur r ω r ω r r1
2

̇· ̇ 1
2

( )( ) ( ). (3)

H is time invariant if and only if ω is time invariant. When H is time
invariant, it is also called the Jacobian constant.

The effective potential can be defined as [20,51]

= − × × +V Ur ω r ω r r( ) 1
2

( )( ) ( ), (4)

which satisfies

= −V x y z V x y z( , , ) ( , , ). (5)

For a uniformly rotating body, Eq. (2) can be simplified to

+ × + ∂
∂

=Vr ω r r
r

¨ 2 ̇ ( ) 0. (6)

The body is assumed to be uniformly rotating throughout this paper.
The body-fixed frame can be defined via a set of orthonormal right-
handed unit vectors e:

≡
⎧
⎨
⎩

⎫
⎬
⎭

e
e
e
e

.
x
y

z (7)

The frame of reference that is used throughout this study is the
body-fixed frame. Let ω be the modulus of the vector ω; in addition,
consider that the vector ω can be written as = + +ω ω ωω e e ex x y y z z.
The equilibrium points are the critical points of the effective potential
V r( ).

The linearised equations of motion relative to the equilibrium point
can be written as

+ − + + =

+ − + + =

+ − + =

ξ ω ζ ω η V ξ V η

η ω ξ ω ζ V ξ V η

ζ ω η ω ξ V ζ

¨ 2 ̇ 2 ̇ 0

¨ 2 ̇ 2 ̇ 0
¨ 2 ̇ 2 ̇ 0.

y z

z x

x y

xx xy

yx yy

zz (8)

where = −ξ x xE, = −η y yE, = −ζ z zE. Here x y z( , , )E E E represents the
location of the equilibrium point.

The characteristic equation follows:

+ − +
+ + −

− +
=

λ V ω λ V ω λ
ω λ V λ V ω λ

ω λ ω λ λ V

2 2
2 2

2 2
0.
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z x
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2

yy
2

zz (9)

Furthermore, it can be rewritten as a sextic equation in λ:

+ + + + + + + + +

− + + + +

+ − =

λ V V V ω ω ω λ V V V V V V

V ω ω V ω V ω V ω V λ

V V V V V

( 4 4 4 ) (

8 4 4 4 )

( ) 0,

x y z

xy x y xy x xx y yy z zz

xy

6
xx yy zz

2 2 2 4
xx yy yy zz zz xx

2 2 2 2 2

xx yy zz zz
2 (10)

where λ denotes the eigenvalues of Eq. (8). The linear stability of the
equilibrium point is determined by the six roots of Eq. (10). Let

= …λ i( 1, 2, ,6)i represent the roots of Eq. (10).
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