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a b s t r a c t

In this article, two models of the generalized thermo-elastic theory are used to see the influence on the
refraction and reflection of the plane waves at the interface under a constant magnetic field. The elasticity
modulus depends on the reference temperature. The elasticity modulus is considered as a linear function
of reference temperature. The resulting problem is solved by using the boundary conditions at the inter-
face. The matrix equations have been solved numerically.
� 2017 The Authors. Published by Elsevier B.V. This is anopenaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

Introduction

The infinite velocity of the thermal wave is used in the classical
theory of thermo-elasticity. This assumption may be useful for
many engineering problems, but practically it is unacceptable
approximation. In some experiments finite speed of the thermal
waves are observed, so to remove this difference generalized
thermo-elastic theories LS and GL was proposed by Lord and Shul-
man [1]. Green and Lindsay [2] developed generalized thermo-
elastic theory involving one thermal relaxation time. Lindsay and
Green [2] derived a temperature dependent thermo-elasticity
involving two relaxation times without violating the classical Four-
ier law of heat conduction. Because, propagation of wave in
thermo-elastic media plays a vital role in several fields such as
solid dynamics, earth quake engineering, nuclear reactors and
aeronautic etc. Various authors considered the propagation of
wave in thermo-elastic an isotropic medium. Parfitt and Eringen
[3] considered the plane waves reflection from the flat wall of a
micro-polar elastic half space. Ariman [4] studied the propagation
of wave in a micro-polar elastic half space. For some relevant work
of interest, we refer the readers to study the work of Kumar and
Singh [5], Singh [6] and Deswal and Kumar [7]. But some papers
described the influence of reference temperature elastic modulus.
In this reference, Othman and Song [8] viewed the influence of

temperature dependent elastic moduli on the reflection magneto
thermo-elastic waves with two relaxation times.

Moreover, Abd-Alla et al. [9] considered the refraction and
reflection of SV waves at the solid liquid interface by considering
primary stress and three thermo-elastic theories. Kumar and Saini
[10] illustrated the effect of refraction and reflection of waves at
the interface between two different porous solids. Wei et al. [11]
investigated the refraction and reflection of P waves at thermo-
elastic and porous thermo-elastic medium.

The magneto thermo-elastic theory includes the impact of mag-
netic field on the thermo-elastic waves. This theory has achieved
more importance in various industrial appliances, especially in
nuclear devices. The connection of magnetic field with strain and
thermal field has been discussed by many researchers; these
include Sinha and Elsibai [12], Deresiewicz [13], Tuncay and Corap-
cioglu [14], Achenbach [15] and Z.D. Zhou et al. [16]. In this paper,
we have considered with influence of two relaxation times on the
refraction and reflection of thermo-elastic plane waves at the solid
liquid interface. The refraction and reflection coefficient ratios of
different refracted and reflected waves with the incident angle h
have been observed by Green Lindsay (GL) theory and dynamical
coupling (CD) theory.

The current article is organized in the following order: Sectio
n ‘‘Formulation of the problem” described the formulation of the
problem. Method of solution is explained in Section ‘‘Methods of
Solutions”. Detail descriptions of the boundary conditions for the
current scenario are given in Section ‘‘Boundary Conditions”. Sect
ion ‘‘Expressions for the refraction and reflection coefficients” is
devoted to obtain the expressions for the refraction and reflection
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coefficients. Numerical results and discussion is given in Section ‘‘
Numerical Results and Discussions”.

Formulation of the problem

Let us assume an isotropic, linear, homogeneous, perfectly con-
ducting and thermally elastic medium with temperature depen-
dent mechanical characteristics covering at the interface of the
two half-spaces.

We kept constant temperature T0 throughout the body with
uniform magnetic field H0 ¼ ð0;H;0Þ, which is applied in the posi-
tive direction of y-axis.

Basic equations

The electromagnetic field is controlled by the following
Maxwell equations.

curl � ¼ Jþ @B
@t

; B ¼ �0E; ð1Þ

curl E ¼ �l0
@�h
@t

; ð2Þ

E ¼ �l0
@u
@t

�H0

� �
; ð3Þ

div � ¼ 0: ð4Þ
Here E is an induced electric field, H0 is initial uniformmagnetic

intensity vector, �0 is electric permeability and J is the current den-
sity vector.

The generalized thermo-elastic differential equations under GL
theory, in the absence of heat source and body force, has the form

1. Equation of motion

q
@2ui

@t2
¼ oij;j þ f i ð5Þ

here f i is the Lorentz force is given as under

f i ¼ l0ðJ�H0Þi ð6Þ

f 1 ¼ �l0H
@�h
@x

� �0l2
0H

2€u; f 2 ¼ 0; f 3 ¼ �l0H
@�h
@z

� �0l2
0H

2 €w

ð7Þ
2. The constitutive law for the generalized thermo-elasticity the-

ory under the GL theory has the form

oij ¼ 2leij þ dij j
@u
@x

þ @w
@z

� �
� g T � T0 þ m0

@T
@t

� �� �
: ð8Þ

3. Under GL theory, the heat conduction equation is

Kr2T ¼ qsE
@T
@t

1þ m1
@

@t

� �
þ gT0

@

@t
@u
@x

þ @w
@z

� �
: ð9Þ

4. Strain-displacement relation
eii ¼ ui;i; ejj ¼ uj;j;

eij ¼ 1
2
ðui;j þ uj;iÞ:

ð10Þ

here j, l are lame’s constants, K is thermal conductivity, q is den-
sity, sE is specific heat at constant strain, oij is components of stress
tensor, ui is components of displacement vector, T is absolute tem-
perature, t is time and m0, m1 are two relaxation times.

Where the derivative with respect to time is represented by a
superposed dot and a comma after suffix shows material deriva-
tives i; j ¼ x; z.

The displacement components in two dimensional forms can be
written as

ux ¼ uðx; z; tÞ; uy ¼ 0; uz ¼ wðx; z; tÞ: ð11Þ
Where, Helmolz’s representations of the displacement compo-

nents ux and uz in terms of scalar potential functions U and W,

u ¼ @U
@x

� @W
@z

; w ¼ @U
@z

þ @W
@x

: ð12Þ

We define temperature dependent parameters as follow:

E ¼ E0f ðTÞ; j ¼ j0E0f ðTÞ; l ¼ l0E0f ðTÞ; g ¼ g0E0f ðTÞ ð13Þ
The non-dimensional function of temperature is f ðTÞ. When the

modulus of elasticity is temperature independent then f ðTÞ ¼ 1
and E ¼ E0.

Putting, Eqs. (7), (8), (10) and (13) into Eq. (5) yield

q
@2ux

@t2
¼ E0f ðTÞ j0

@2u
@x2

þ @2w
@x@z

 !
þ 2l0

@exx
@x

� g0
@

@x
ðT þ m0 _TÞ

" #

þ 2E0f ðTÞl0
@exz
@z

� l0H
@�h
@x

� l2
0H

2�0
@2u
@t2

;

ð14Þ

q
@2uz

@t2
¼ E0f ðTÞ j0

@2u
@z@x

þ @2w
@z2

 !
þ 2l0

@ezz
@z

� g0
@

@z
ðT þ m0 _TÞ

" #

þ 2E0f ðTÞl0
@ezx
@x

� l0H
@�h
@z

� l2
0H

2�0
@2w
@t2

:

ð15Þ
Putting, Eq. (12) in Eqs. (1)–(4), we can obtain

�h ¼ �Hr2U: ð16Þ
We introduce the different non dimensional variables are

follow:

x�i ¼
xi

x1Ct
; u�

i ¼
ui

x1Ct
; t� ¼ t

x1Ct
; m�0 ¼ m0

x1
; m�1 ¼ m1

x1
; �h� ¼ �h

H
;

o�
ij ¼

oij

qC2
t

; T� ¼ g0E0ðT � T0Þ
qC2

t

; b ¼ 1þ c2a
c2

; b1 ¼ 1
1� b�T0

¼ 1
f ðT0Þ :

ð17Þ
After non-dimensionalize, the Eqs. (8), (9), (14), (15) and (16)

taken the following forms

bb1
@2U
@t2

¼ ð1þ b1rHÞr2U� Tþ m0
@T
@t

� �
; ð18Þ

bb1
@2W
@t2

¼ ð1� aÞr2W; ð19Þ

r2T ¼ @T
@t

þ m1
@2T
@t2

 !
þ er2 _U; ð20Þ

�h ¼ �r2U: ð21Þ
where r2 is the Laplace’s operator.

The constitutive equations reduce to

b1oij ¼ ð1� aÞðui;j þ uj;iÞ

þ dij ð2a� 1Þ @u
@x

þ @w
@z

� �
� Tþ m0

@T
@t

� �� �
: ð22Þ

Where, a ¼ E0ðj0 þ l0Þ=qC2
t , rH ¼ c2a

C2
t
, e� ¼ g0T0

q2sEC2
t
, c2a ¼ l0H

2

q ,

C2
t ¼ E0ðj0 þ 2l0Þ=q, c2 ¼ 1

l0�0
, x1 ¼ K=qCts2E .
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