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a b s t r a c t

In this article, a reduced five-equation two-phase flow model is numerically investigated. The formula-
tion of the model is based on the conservation and energy exchange laws. The model is non-
conservative and the governing equations contain two equations for the mass conservation, one for
the over all momentum and one for the total energy. The fifth equation is the energy equation for one
of the two phases that includes a source term on the right hand side for incorporating energy exchange
between the two fluids in the form of mechanical and thermodynamical works. A Runge-Kutta discontin-
uous Galerkin finite element method is applied to solve the model equations. The main attractive features
of the proposed method include its formal higher order accuracy, its nonlinear stability, its ability to han-
dle complicated geometries, and its ability to capture sharp discontinuities or strong gradients in the
solutions without producing spurious oscillations. The proposed method is robust and well suited for
large-scale time-dependent computational problems. Several case studies of two-phase flows are pre-
sented. For validation and comparison of the results, the same model equations are also solved by using
a staggered central scheme. It was found that discontinuous Galerkin scheme produces better results as
compared to the staggered central scheme.

� 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

In two-phase flows, two fluids of different densities are sepa-
rated by a thin interface (see Fig. 1). The flow can be incompress-
ible or compressible. Phases are identified as ‘‘homogeneous”
parts of the fluid for which unique local state and transport prop-
erties can be defined. Generally, phases are considered as the state
of matter, e.g. gas/vapor, liquid, or solid. The flow of gas carrying
liquid droplets or solid particles or the flow of liquid carrying vapor
or flow of solid granular material and fluid or gas bubbles are the
typical examples of two-phase flows. Normally, in the case of
two-phase flows, we are not interested in a detailed description
of particle interaction, instead we want to describe the flow as a
whole. This is exactly the situation where the homogenized
approach comes into play. An important issue concerning the sys-
tems of governing equations for two-phase flow models is that
they are intrinsically non-conservative. The mathematical struc-
tures of the non-conservative systems are more complicated as
compared to conservation laws. Also, there is a lack of theory for

numerical methods to solve such systems. On the other hand, the
development of efficient numerical methods for the solution of
two-phase flows is of great importance. As the model equations
are intrinsically non-conservative, one has to provide non-
conservative methods for their solutions.

Two phase flows can be observed in nature very easily, such as
rainy or snowy winds, avalanches, debris flows, tornadoes,
typhoons, air and water pollution, volcanic activities, and so on.
They are also working processes in a variety of conventional and
nuclear power plants, combustion engines, propulsion systems,
oil and gas transport, chemical industry, biological industry, pro-
cess technology in the metallurgical industry or in food production,
blood flow, and etc. Due to their wide range applications, two-
phase flows require suitable mathematical models to predict their
physical behavior. However, modeling and simulation of such
flows are challenging tasks.

Methods of averaging have been in use since the mid-70s when
Ishii [1] presented the governing equations for the homogenized
flow in his classical book. Nowadays, the more or less established
basic model includes the two continuity, two momentum, and
two energy equations for both phases. The averaging of the single
phase equations results in additional terms, which describe the
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interaction between the phases. These are the mass transfer terms
for the continuity equations, the momentum exchange terms for
the momentum equations, and the energy exchange terms for
the energy equations. The closure to the system of governing equa-
tions is usually achieved by adding an additional equation for the
fraction of one of the phases, and the equations of state for both
phases. Another approach is to use some simplifying assumptions,
like incompressibility of one phase, equality of pressures, and etc.

Several two-phase flow models exist in the literature for
describing the behavior of physical mixtures. For each fluid, they
contain separate pressures, velocities and densities. If a convection
equation for the interface motion is coupled with the conservation
laws, the models are called as seven-equation models. One of such
models for solid-gas two-phase flows was initially introduced by
Baer and Nunziato [2] and it was further investigated by Abgrall
and Saurel [3,4]. These seven equation models are considered as
the best and established two-phase flow models. However, they
have a number of numerical complexities. To resolve these difficul-
ties researchers have proposed reduced three to six-equation mod-
els [5–7].

Kapila deduced a five equation model [5] from Baer and Nunzi-
ato’s seven-equation model [2] and it is a well known reduced
model that has been successfully implemented to study interfacing
compressible fluids, barotropic and non-barotropic cavitating
flows. The Kapila’s five-equation model contains first four conser-
vative equations, two for the mass conservation of both fluids,
one for the total momentum conservation of the mixture and
one for the total energy conservation. The fifth equation is a non-
zero convection equation for the volume fraction of one of the
two phases.

Although, Kapila’s five equation model is simple, but it has a
number of serious difficulties. For example, the model is still
non-conservative and, thus, it is difficult to obtain a numerical
solution which converges to the physical solution. Another issue
is related to non-conservative behavior of the mixture sound speed
[8].

In order to make the Kapila’s five-equation model easier and to
remove the aforementioned difficulties, Kreeft and Koren [6] have
introduced a new formulation of the Kapila’s five equation model.
This new model is also non-conservative and it contains five equa-
tions [6]. The first two equations are for the conservation of mass,
one for the mixture momentum conservation and one for the total
energy conservation. The fifth equation is the energy equation for
one of the two phases which includes a source term on the right
hand side representing the energy exchange between two fluids
in the form of mechanical and thermo-dynamical work. The two-
phase flow models have already been solved by finite volume type
schemes, such as central upwind scheme, central NT scheme,
space-time CESE scheme and kinetic flux vector splitting (KFVS)
scheme [9–13]. Also, diffuse interface method and finite volume
WENO scheme have been used to solve the two-phase flow models
[14–16].

The discontinuous Galerkin (DG) finite element method was ini-
tially introduced by [17] for solving neutron transport equations.

Afterwards, various DG methods were developed and formulated
by Cockburn and Shu for nonlinear hyperbolic system in the series
of papers, see for example [18–20]. DG-methods are being applied
in the main stream of computational fluid dynamic models, see for
example [21–25]. The DG methods are versatile, flexible, and have
intrinsic stability making them suitable for convection dominated
problems. DG-methods can be efficiently applied to partial differ-
ential equations (PDEs) of all kind including equations whose type
changes within the computational domain.

DG-methods belong to the class of finite element method (FEM)
which have several advantages over finite difference methods
(FDMs) and finite volume methods (FVMs). For instance, they
inherit geometric flexibility of FVMs and FEMs, retain the conser-
vation properties of FVMs, and possess high-order properties of
FEMs. Therefore, DG-methods are locally conservative, stable, and
high order accurate. These methods satisfy the total variation
bounded (TVB) property that guarantees the positivity of the
schemes, see e.g. [18–20]. In contrast to high order FDMs and
FVMs, DG-methods require a simple treatment of the boundary
conditions in order to achieve high order accuracy uniformly.
Moreover, DG methods allow discontinuous approximations and
produce block-diagonal mass matrices that can be easily inverted
through algorithms of low computational cost. These methods
incorporate the idea of numerical fluxes and slope limiters in a
very natural way to avoid spurious oscillations (wiggles), which
usually occur due to shocks, discontinuities or sharp changes in
the solution.

In this paper, Runge-Kutta DG-scheme of order two is imple-
mented for solving the reduced five-equation model of Kreeft
and Koren [6,18–20]. The scheme employs a DG-method in the
space-coordinate that converts the given system of partial differ-
ential equations to a system of ordinary differential equations
(ODEs). The resulting ODE-system is then solved by using explicit
and nonlinearly stable high order Runge-Kutta method. To guaran-
tee the positivity of the numerical scheme an additional TVB prop-
erty of the proposed ODE-solver along with the RK-DG is used. The
numerical test problems of this manuscript verify the accuracy and
efficiency of the current DG-scheme for solving two-phase flow
models. For validation, the numerical results of the proposed
scheme are compared with those obtained from the staggered cen-
tral NT scheme [26].

The present article is organized as follows. Section ‘‘Compressi
ble two-phase flow model” is devoted to the introduction of one-
dimensional compressible two-phase flow model of Kreeft and
Koren [6]. The discontinuous Galerkin method is presented in Sec
tion ‘‘Discontinuous Galerkin method for compressible TPSF mod-
el”. Numerical case studies are carried out in Section ‘‘Numerical
test problems”. Finally, concluding remarks are given in
Section ‘‘Conclusions”.

Compressible two-phase flow model

In this section, the one-dimensional reduced two-phase flow
model of Kreeft and Koren [6] is presented. The considered model

Fig. 1. Schematic diagram for two types of flows. (a) Flows separated by sharp interface. (b) Multiphase flows.
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