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a b s t r a c t

This paper investigates the behavior of MHD stagnation point flow of Carreau fluid in the presence of infi-
nite shear rate viscosity. Additionally heat transfer analysis in the existence of non-linear radiation with
convective boundary condition is performed. Moreover effects of Joule heating is observed and mathe-
matical analysis is presented in the presence of viscous dissipation. The suitable transformations are
employed to alter the leading partial differential equations to a set of ordinary differential equations.
The subsequent non-straight common ordinary differential equations are solved numerically by an effec-
tive numerical approach specifically Runge-Kutta Fehlberg method alongside shooting technique. It is
found that the higher values of Hartmann number Mð Þ correspond to thickening of the thermal and thin-
ning of momentum boundary layer thickness. The analysis further reveals that the fluid velocity is dimin-
ished by increasing the viscosity ratio parameter ðb�Þ and opposite trend is observed for temperature
profile for both hydrodynamic and hydromagnetic flows. In addition the momentum boundary layer
thickness is increased with velocity ratio parameter að Þ and opposite is true for thermal boundary layer
thickness.
� 2017 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Now a days flows of non-Newtonian liquids in the presence of
magnetic field have significant role in a number of industrial and
engineering processes. The common examples of such magneto
fluids include plasmas, salt water and electrolytes. The basic
concept behind magnetohydrodynamics is that magnetic fields
can induce currents in a moving conductive fluid, which in turn
polarizes the fluid and reciprocally changes the magnetic field
itself. The pioneer work on MHD flow past a stretching surface
was done by Palov [1]. After that Andersson [2] inspected the
MHD flow of a viscous fluid. Moreover Makinde et al. [3] discov-
ered the MHD variable viscosity flow over a convectively heated
plate in porous medium along thermophoresis and radiative heat
transfer. Few latest studies in this direction can be seen through
the attempts [4–6]. Sakiadis [7] discussed the boundary layer
behavior on a moving surface and he applied similarity transfor-
mations to the boundary layer equations and then numerically
solved. Crane [8] simplified the work of Sakiadis.

Thermal radiation is one of the key components of heat
exchange. It is produced by the thermal motion of charged parti-
cles in matter. All matter with a temperature greater than absolute
zero emits thermal radiation. Heat transfer analysis with radiation
plays an important role in industrial and technological process.
This contains the design of furnace, heat exchangers, safety of
nuclear reactor, power plants and turbid water bodies [9]. Various
discoveries have been accounted on the boundary layer flows in
the stagnation point region. Stagnation points have huge applica-
tions in real world and mechanical procedures. These procedures
incorporate blowing glass, drying and cooling of papers and other
mechanical procedures in designing. The steady two dimensional
flow with stagnation point in an incompressible micro polar fluid
over a stretching sheet has been studied by Nazar et al. [10]. Farooq
et al. [11] studied the stagnation point flow with MHD in a vis-
coelastic nano fluid with non-linear radiation effects. Heat transfer
with porous medium over a stretching sheet with thermal radia-
tion and variable thermal conductivity was discussed by Cortell
[12]. Moreover, a numerical examination of heat transfer and flow
of Carreau fluid in cylindrical coordinates was discovered by
Khellaf and Lauriat [13]. Effect of Carreau fluid flow down an
inclined plane with a free surface was inspected by Tshehla [14].
Abbasi et al. [15] discovered the MHD peristaltic transport of
Carreau fluid in curved channel with Hall effects.
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Further, the impact of thermal radiation is important in space
innovation and high temperature forms. Hossain et al. [16]
explored the thermal radiation’s effects with the Rosseland diffu-
sion approximation on convective flow over a vertical uniformly
heated porous plate. Later on, Hayat et al. [17] inspected the
MHD three dimensional flow of a nano fluid with nonlinear ther-
mal radiation and velocity slip. Also Hayat et al. [18] discussed
the Oldroyd-B nanofluid flow with MHD over a stretching sheet
with heat generation/absorption. Recently Khan and Hashim [19]
explored the MHD flow with stagnation point and heat transfer
in Carreau fluid along with convective boundary conditions. Addi-
tionally, Khan et al. [20] investigated the Carreau fluid with MHD
over a convectively heated surface with nonlinear radiation.
Advancements in the study of non-Newtonian fluids have been
made by different authors [27–31].

The aim of the present study is to address the effects of the
MHD Carreau fluid in stagnation point flow with infinite shear rate
viscosity. Additionally, Joule heating and nonlinear radiative heat
transfer is studied in the presence of convective boundary condi-
tion. It is important to note that Carreau fluid is a distinct class
of generalized Newtonian fluid which classifies shear thinning
and shear thickening nature of fluids. The governing partial differ-
ential equations are converted to a set of non-linear ordinary dif-
ferential equations. Then are solved numerically by applying
Runge-Kutta fourth-fifth order method via shooting technique.
Current research graphically presents the physical importance of
the parameters on the temperature and velocity profiles. The influ-
ences of the pertinent flow variables M, a, b�, NR, hw and c are
described through tables and graphs.

Mathematical formulation

We examine the steady boundary layer flow of an incompress-
ible Carreau viscosity liquid model in the region of stagnation point
near a stretching surface. The flow is initiated by a linear stretching
surface. The coordinate system is designated in such a way that x-
axis is measured alongside the stretching sheet while y-axis is nor-
mal to it and fluid conquers the space y > 0. The magnetic field B0

is uniform and applied in y direction and the induced magnetic
field is neglected under low magnetic Reynolds number assump-
tion. The sheet velocity is assumed to be uwðxÞ ¼ cx with c > 0 is
stretching rate. The velocity of exterior flow is u1 ¼ ax ða > 0Þ,
where a is constant. Moreover, heat transfer analysis is completed
along the nonlinear thermal radiation with convective boundary
condition at the surface. The viscous dissipation and Joul heating
effects are also incorporated (Fig. 1).

The constitutive equations for the generalized Newtonian
Carreau fluid [20,21] are given as

s ¼ �pIþ lð _cÞA1; l ¼ l0 b� þ 1� b�ð Þ½1þ ðC _cÞ2�
n�1
2

� �
: ð1Þ

Here s is the Cauchy stress tensor, p the pressure, A1 the first

Rivlin-Erickson tensor, I the identity tensor, _c ¼
ffiffiffiffiffiffiffi
1
2P

q
with P as

the second invariant strain tensor and defined as P ¼ traceðA2
1Þ;n

the power law index, C a material time constant and
b� ¼ l1=lo

� �
the viscosity ratio parameter with l0 the zero shear

rate viscosity, l1 the infinite shear rate viscosity and taken to be
less than one here.

Under the above assumptions and the usual boundary-layer
approximations, the governing boundary layer equations for
present flow are given by
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In the above equations, a1 ¼ k
qcp

is the thermal diffusivity with cp
the specific heat and k the thermal conductivity, r the electrical
conductivity of the fluid and m ¼ l0

q the kinematic viscosity of the

base fluid.
Note that fluid is portrayed as Newtonian fluid for n ¼ 1 and/or

C ¼ 0, shear thinning for 0 < n < 1 and shear thickening for n > 1.
Radiative heat flux used in Eq. (4) is given by the Roseland

approximation [22]
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where r� and k� are the Stefan-Boltzman constant and the mean
absorption coefficient, respectively. For a planer boundary layer
flow over a heated surface, Eq. (5) can be written as [23]
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Using Eq. (6) the energy Eq. (4) can be composed as
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Fig. 1. Physical model under consideration.
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