Author's Accepted Manuscript

Results of the CCRI(II)-S12.H-3 supplementary comparison: Comparison of methods for the calculation of the activity and standard uncertainty of a tritiated-water source measured using the LSC-TDCR method

Philippe Cassette, Timotheos Altzitzoglou, Andrei Antohe, Mario Rossi, Arzu Arinc, Marco Capogni, Raphael Galea, Arunas Gudelis, Karsten Kossert, K.B. Lee, Juncheng Liang, Youcef Nedjadi, Pilar Oropesa Verdecia, Tanya Shilnikova, Winifred van Wyngaardt, Tomasz Ziemek, Brian Zimmerman

 PII:
 S0969-8043(17)30419-0

 DOI:
 http://dx.doi.org/10.1016/j.apradiso.2017.07.007

 Reference:
 ARI7959

To appear in: Applied Radiation and Isotopes

Received date: 20 March 2017 Revised date: 4 July 2017 Accepted date: 5 July 2017

Cite this article as: Philippe Cassette, Timotheos Altzitzoglou, Andrei Antohe Mario Rossi, Arzu Arinc, Marco Capogni, Raphael Galea, Arunas Gudelis Karsten Kossert, K.B. Lee, Juncheng Liang, Youcef Nedjadi, Pilar Oropesa Verdecia, Tanya Shilnikova, Winifred van Wyngaardt, Tomasz Ziemek and Brian Zimmerman, Results of the CCRI(II)-S12.H-3 supplementary comparisor Comparison of methods for the calculation of the activity and standar uncertainty of a tritiated-water source measured using the LSC-TDCR method *Applied Radiation and Isotopes* http://dx.doi.org/10.1016/j.apradiso.2017.07.007

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

Results of the CCRI(II)-S12.H-3 supplementary comparison: Comparison of methods for the calculation of the activity and standard uncertainty of a tritiated-water source measured using the LSC-TDCR method

Philippe Cassette^{1*}, Timotheos Altzitzoglou², Andrei Antohe³, Mario Rossi⁴, Arzu Arinc⁵,

Marco Capogni⁶, Raphael Galea⁷, Arunas Gudelis⁸, Karsten Kossert⁹, K.B. Lee¹⁰, Juncheng

Liang¹¹, Youcef Nedjadi¹², Pilar Oropesa Verdecia¹³, Tanya Shilnikova¹⁴, Winifred van

Wyngaardt¹⁵, Tomasz Ziemek¹⁶, Brian Zimmerman¹⁷

¹CEA, LIST, Laboratoire National Henri Becquerel, LNE-LNHB, CEA-Saclay, 91191 Gif sur Yvette Cedex, France.

²European Commission, Joint Research Centre, (JRC), Directorate for Nuclear Safety and Security, Retieseweg 111, B-2440 Geel, Belgium

³Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, IFIN-HH, Magurele, RO 0-77125, Romania

⁴Laboratorio de Metrología de Radioisótopos, CNEA, Argentina

⁵National Physical Laboratory, NPL, Queens Road, Teddington, Middlesex TW11 0LW, UK

⁶ENEA, National Institute of Ionizing Radiation Metrology, INMRI, Italy

⁷National Research Council of Canada (NRC), 1200 Montreal Road, Ottawa, ON, Canada K1A0R6 ⁸Ionizing Radiation Metrology Laboratory, Center for Physical Sciences and Technology, FTMC, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania

⁹Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany

¹⁰Korea Research Institute of Standards and Science, Yuseong, Daejeon 305-340, Republic of Korea

¹¹Division of Ionizing Radiation Metrology, National Institute of Metrology, Beijing 100029, China

¹²Institut de Radiophysique, IRA-METAS, Lausanne, Switzerland

¹³Centro de Isótopos (CENTIS). Guanabacoa, La Habana 11100, Cuba

¹⁴D.I. Mendeleyev Institute for Metrology (VNIIM), Russia

¹⁵ Australian Nuclear Science and Technology Organisation, ANSTO, New Illawarra Road, Lucas Heights NSW 2234, Australia

¹⁶National Centre for Nuclear Research Radioisotope Centre POLATOM (NCBJ RC POLATOM), Andrzeja Soltana 7, 05-400 Otwock, Poland

¹⁷Physical Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD USA

*Corresponding author philippe.cassette@cea.fr

Abstract

A comparison of calculations of the activity of a ${}^{3}\text{H}_{2}\text{O}$ liquid scintillation source using the same experimental data set collected at the LNE-LNHB with a triple-to-double coincidence ratio (TDCR) counter was completed. A total of 17 laboratories calculated the activity and standard uncertainty of the LS source using the files with experimental data provided by the LNE-LNHB. The results as well as relevant information on the computation techniques are presented and analysed in this paper. All results are compatible, even if there is a significant dispersion between the reported uncertainties. An output of this comparison is the estimation

Download English Version:

https://daneshyari.com/en/article/8208771

Download Persian Version:

https://daneshyari.com/article/8208771

Daneshyari.com