ARTICLE IN PRESS

Applied Radiation and Isotopes xxx (xxxx) xxx-xxx

Contents lists available at ScienceDirect

Applied Radiation and Isotopes

journal homepage: www.elsevier.com/locate/apradiso

Standardization of ⁶⁷Cu and calibration of the ionization chamber. Impurities and decay scheme problems

M. Sahagia*, A. Luca, M.-R. Ioan, A. Antohe, C. Ivan

Horia Hulubei National Institute for R & D in Physics and Nuclear Engineering, IFIN-HH, Bucharest .30 Reactorului St. Magurele, jud. Ilfov, POB MG-6, RO 0-77125, Romania

ARTICLE INFO

Keywords: Standardization of 67 Cu $4\pi\beta$ (PC)- γ coincidence Decay scheme parameters Impurities Ionization chamber γ -ray spectrometry

ABSTRACT

This paper describes the standardization of 67 Cu by the $4\pi\beta(PC)$ - γ coincidence method, and the calibration of ionization chamber. The difficulties were. (i) One of the excited levels of 67 Zn has a half life of 9.10 μ s. (ii) A recent publication reconsiders the decay scheme parameters. (iii) The solution had a significant content of impurities. The conclusions were that the result of absolute standardization is less influenced by the decay scheme parameters and impurities than the measurements by ionization chamber.

HIGHLIGHTS

- Standardization by the $4\pi\beta(PC)$ - γ coincidence method.
- Calibration of the ionization chamber.
- Problems: Excited level of ⁶⁷Zn, decay scheme, impurity.
- Absolute standardization is less influenced than the ionization chamber measurement.

1. Introduction

⁶⁷Cu is a beta-gamma emitter with a half life of 61.83 h, with a complex decay scheme of the triangular type, resulting in the rather weak emission of gamma-rays with low energy, mainly 184.6 keV, intensity 48.7%, and emission of beta minus radiations, maximum energy within the interval (168.2-561.7) keV, intensity 100%. It is of great interest in targeted radiotherapy, especially radioimmunotherapy, due to the properties: (a) It can be associated in the same type of pharmaceutical with 61 Cu, $T_{1/2} =$ 3.33 h, a positron emitter, or with 64 Cu, $T_{1/2} = 12.701$ h, a positron and electron emitter, resulting theranostics products (PET diagnosis + therapy) (Verel et al., 2005); (b) It is superior as compared with ¹³¹I, due to its high tropism for some organs and due to its lower energy and emission intensity of gamma-rays, with the result the optimum irradiation of the target treatment volume and avoidance of nonuseful irradiation of the adjacent organs. (DeNardo et al., 1999). It can be produced in several modes (Qaim, 2015; Medvedev et al., 2012) at a cyclotron via the reactions: ⁶⁸Zn (p, 2p) 67 Cu; 67 Zn (d, 2p) 67 Cu; 64 Ni (α , p) 67 Cu, and at a nuclear reactor via the 67 Zn (n, p) 67 Cu reaction; the common problem is the occurrence of impurities, hard to be removed (Asabella et al., 2014). It can be also produced

at the linear accelerator via the reaction $^{68}Zn~(\gamma,~p)^{67}Cu,$ with a high degree of purity, Chen et al. (2015). This paper describes the absolute standardization of ^{67}Cu by the $4\pi\beta(PC)$ - γ coincidence method. The radioactive solution was obtained from the Nuclear Physics Institute of the ASCR, v.v.i, Department of radiopharmaceuticals, 250 68 Husinec-Rež 130, Czech Republic, by the kindness of Dr. Eng. Ondřej Lebeda. A content of ^{67}Ga of (3.59 \pm 0.91)% was detected, a nonnegligible quantity, for which we present the mode to treat its contribution in activity and its subtraction. On the other hand, the problems of uncertainties in decay data, according to new published data, is treated. Finally, the calibration of CENTRONIC IG12/20 A ionization chamber results are presented.

2. Standardization of 67 Cu by the $4\pi\beta(PC)$ - γ coincidence method

- 2.1. Decay scheme and basic coincidence equations
- 2.1.1. Neglecting the dead time influence on the counting rate

Fig. 1 presents the decay scheme, from Junde et al. (2005) and (Meyer et al., 1978), with the following intensities and energies of β emissions: $b_1 = 0.011(11)$, $E_{\beta max} = 168.2$ keV; $b_2 = 0.57(6)$, $E_{\beta max} = 377.1$ keV;

E-mail address: msahagia@nipne.ro (M. Sahagia).

http://dx.doi.org/10.1016/j.apradiso.2017.10.036

Received 20 February 2017; Received in revised form 18 October 2017; Accepted 18 October 2017 0969-8043/ © 2017 Elsevier Ltd. All rights reserved.

^{*} Corresponding author.

M. Sahagia et al.

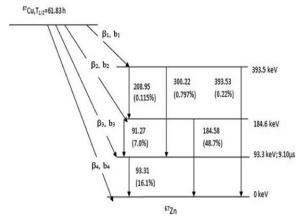


Fig. 1. Decay scheme of 67 Cu.

 b_3 =0.220(22), $E_{\rm \beta max}$ = 468.4 keV; b_4 = 0.200(20), $E_{\rm \beta max}$ = 561.7 keV. The low energy transitions towards the ground state of ⁶⁷Zn are accompanied by internal conversion, as follows. In the transitions from the levels: 393.5 keV and 184.6 keV, low intensity conversion electrons (ce), coincident with the respective beta radiations, are emitted. In the isomer transition from the 93.31 keV level, with a half life of 9.10 μs , the ce_3 emissions are $E_{cK} = 83.652 \text{ keV}$, $[I = 0.1209(15)] E_{cL} = 92.117 \text{ keV}$, [I =0.01481(18)] and $E_{\rm cM}=93.17$ keV, [I=0.0021], noncoincident with the beta rays. The β_1 -radiations are coincident with the (209.0 + 300.2 +393.5 keV) γ -rays, the β_2 are coincident with the (91.3 and 184.6 keV) ones. The β_2 radiations have not coincident y-rays and the β_4 are decays to the ground state. The ce_3 are superimposed on the noncoincident β_3 . The 93.31 keV γ-rays are not coincident with all the beta radiations feeding the 93.31 keV level, (b₁, b₂ and b₃) and consequently they must be avoided in the counting, by applying a higher energy threshold, let's say 130 keV. Otherwise, a false, lower beta counting efficiency would occur. In this case, the decay scheme can be replaced with the equivalent one, presented in Fig. 2, and the corresponding coincidence equations are:

$$\begin{split} \frac{N_{\beta}}{N_{0}} &= a_{1} \left[\varepsilon_{\beta \, 1} + (1 - \varepsilon_{\beta \, 1}) \frac{\varepsilon_{ce1} \alpha_{1} + \varepsilon_{\beta \gamma 1}}{1 + \alpha_{1}} \right] + a_{2} \left[\varepsilon_{\beta 2} + (1 - \varepsilon_{\beta 2}) \frac{\varepsilon_{ce2} \alpha_{2} + \varepsilon_{\beta \gamma 2}}{1 + \alpha_{2}} \right] + \\ (a_{3} \varepsilon_{\beta 3} + a_{4} \varepsilon_{\beta 4}) &+ I_{transition \, 93.31 \text{keV}} \frac{\varepsilon_{ce3} \alpha_{3} + \varepsilon_{\beta \gamma 3}}{1 + \alpha_{3}} \\ \frac{N_{\gamma}}{N_{0}} &= a_{1} \left[\frac{0.00115}{a_{1}} (\varepsilon_{\gamma 208} + \varepsilon_{\gamma 185}) + \frac{0.00797}{a_{1}} \varepsilon_{\gamma 300} + \frac{0.0022}{a_{1}} \varepsilon_{\gamma 393} \right] + a_{2} \varepsilon_{\gamma 185} \\ &= a_{1} \varepsilon_{\gamma 1} + a_{2} \varepsilon_{\gamma 2} \\ \frac{N_{c}}{N_{0}} &= a_{1} \varepsilon_{\gamma 1} \left[\varepsilon_{\beta \, 1} + (1 - \varepsilon_{\beta \, 1}) \frac{\varepsilon_{c1}}{\varepsilon_{\gamma 1}} \right] + a_{2} \varepsilon_{\gamma 2} \left[\varepsilon_{\beta 2} + (1 - \varepsilon_{\beta 2}) \frac{\varepsilon_{c2}}{\varepsilon_{\gamma 2}} \right] \end{split}$$

 ϵ_{β} and $\epsilon_{\beta\gamma}$ are the proportional counter (PC) efficiencies to β radiations and γ -rays. ϵ_{γ} are the efficiencies of the NaI(Tl) crystal to γ -rays and ϵ_{c} are

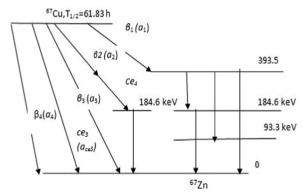


Fig. 2. Equivalent decay scheme of ⁶⁷Cu.

Compton scattering and γ - γ coincidences. The symbols of α with suffix ce_1 and ce_2 correspond to the weighted means of the internal conversion coefficients for transitions from the 393.5 kev-level and from the 184.6 kev-level, respectively, where the weights are the transition probabilities; ce_3 are the noncoincident 83.652 keV, 92.117 keV and 93.17 keV conversion electrons; ce_4 are concurrent with the non counted 91.27 γ -rays and may be considered as an "electron emission subsequent to the beta radiation" (Grigorescu et al., 2002). α are conversion coefficients corresponding to the respective decay levels.

The linearity condition for branches a_1 and a_2 is: $\varepsilon_{v1} = \varepsilon_{v2}$

$$\frac{1}{0.011}[0.00115(\varepsilon_{\gamma 208} + \varepsilon_{\gamma 185}) + 0.00797\varepsilon_{\gamma 300} + 0.0022\varepsilon_{\gamma 393}] = \varepsilon_{\gamma 185}$$
 (2)

Or approximately:
$$0.725\varepsilon_{\gamma 300} + 0.20\varepsilon_{\gamma 393} = 0.791\varepsilon_{\gamma 185}$$
 (3)

Condition (3) is almost accomplished by imposing the γ counting window between 100 keV and 400 keV. In this situation, a new simplified, equivalent decay scheme can be considered, as presented in Fig. 3. The coincidence relations (1) reduce to:

$$\begin{split} \frac{N_{\beta}}{N_{0}} &= (a_{1} + a_{2}) \left[\varepsilon_{\beta \text{mean, } 1+2} + (1 - \varepsilon_{\beta \text{mean, } 1+2}) \frac{\varepsilon_{ce2} \alpha_{2} + \varepsilon_{\beta \gamma 2}}{1 + \alpha_{2}} \right] + \\ (a_{3} + a_{4}) \varepsilon_{\beta \text{mean, } 3+4} &+ I_{\text{transition } 93.31 \text{keV}} \frac{\varepsilon_{ce3} \alpha_{3} + \varepsilon_{\beta \gamma 3}}{1 + \alpha_{3}} \\ \frac{N_{\gamma}}{N_{0}} &= (a_{1} + a_{2}) \varepsilon_{\gamma} \\ \frac{N_{c}}{N_{0}} &= (a_{1} + a_{2}) \varepsilon_{\gamma} \left[\varepsilon_{\beta \text{mean, } 1+2} + (1 - \varepsilon_{\beta \text{mean, } 1+2}) \frac{\varepsilon_{c}}{\varepsilon_{\gamma}} \right] \end{split}$$

$$(4)$$

In the linearity conditions, Fig. 3, and for short extrapolation intervals, one may consider a linear efficiency relation (Sahagia et al., 2002), of the type

$$(1 - \varepsilon_{\beta \text{mean},3+4}) = m(1 - N_c/N_{\gamma}) \tag{5}$$

Eq. (4) become:

$$\begin{split} \frac{N_{\beta}N_{\gamma}}{N_{0}N_{c}} &= 1 + (1 - K_{1})(\frac{N_{\gamma}}{N_{c}} - 1) + I_{\text{transition 93.31keV}} \frac{\varepsilon_{ce3}\alpha_{3} + \varepsilon_{\beta\gamma3}}{1 + \alpha_{3}} \frac{N_{\gamma}}{N_{c}} \\ &= 1 + (1 - K)(\frac{N_{\gamma}}{N_{c}} - 1) + I_{\text{transition 93.31keV}} \frac{\varepsilon_{ce3}\alpha_{3} + \varepsilon_{\beta\gamma3}}{1 + \alpha_{3}}; \\ (1 - K) &= (1 - K_{1} + I_{\text{transition 93.31keV}} \frac{\varepsilon_{ce3}\alpha_{3} + \varepsilon_{\beta\gamma3}}{1 + \alpha_{3}}) \end{split}$$
(6)

When the extrapolation procedure is applied, $N_{\gamma}/N_{\rm c}=1$, Eq. (6) becomes:

$$N_{0} = \left(\frac{N_{p}N_{y}}{N_{c}}\right)_{\text{extrapolated}} \frac{1}{1 + I_{\text{transition}} \quad 93.31\text{keV}} \frac{\varepsilon_{\text{Ce3}}\alpha_{3} + \varepsilon_{\text{fy3}}}{1 + \alpha_{3}}$$

$$(7)$$

2.1.2. Dead time correction due to the delay of the 93.31 keV state

Due to the significant delay of the 93.31 keV level, $T_{1/2} = 9.10 \,\mu s$, and of the nonnegligible dead time of the beta channel in our coincidence installation, $\theta = (10.0 \pm 0.5) \,\mu s$, a significant loss of signals

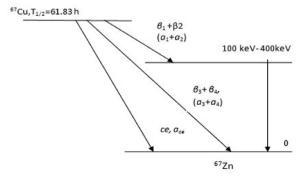


Fig. 3. Simplified equivalent decay scheme of ⁶⁷Cu.

Download English Version:

https://daneshyari.com/en/article/8208795

Download Persian Version:

https://daneshyari.com/article/8208795

Daneshyari.com