

Contents lists available at ScienceDirect

Applied Radiation and Isotopes

journal homepage: www.elsevier.com/locate/apradiso

Measurement of the ²¹¹Pb half-life using recoil atoms from ²¹⁹Rn decay

Applied Radiation and

P.M. Aitken-Smith*, S.M. Collins

National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 OLW, UK

HIGHLIGHTS

• Radiochemically pure ²¹¹Pb samples produced from α recoil from ²¹⁹Rn decay.

• Half-life measured using a 2π proportional counter.

• Measured ²¹¹Pb half-life of 36.164 (13) min.

• Recommended ²¹¹Pb half-life of 36.161 (17) min evaluated.

ARTICLE INFO

Article history: Received 24 September 2015 Received in revised form 22 December 2015 Accepted 4 January 2016 Available online 5 January 2016

Keywords: Pb-211 Radioactivity Half-life Nuclear data Proportional counter

ABSTRACT

The radioactive half-life of ²¹¹Pb was measured, by α -particle counting of samples of radiochemically pure ²¹¹Pb in equilibrium with its α -emitting progeny, ²¹¹Bi and ²¹¹Po. The samples were prepared by the collection of ²¹⁵Po recoil atoms from the decay of the ²¹⁹Rn decay progeny produced from a ²²³Ra sample onto stainless steel discs. The radioactive decay of the ²¹¹Pb was measured utilising a 2π proportional counter operating on the α plateau. A half-life of 36.164 (13) min was determined, which is in agreement with currently available literature. A full uncertainty budget is presented. A recommended half-life of $T_{1/2}(^{211}\text{Pb})=36.161$ (17) min has been evaluated from the current literature values.

Crown Copyright © 2016 Published by Elsevier Ltd. All rights reserved.

1. Introduction

The radionuclide ²¹¹Pb is a short-lived ($T_{1/2} \sim 36.1$ min) member of the primordial 4n+3 decay series of ²³⁵U (see Fig. 1), which constitutes approximately 0.72% of naturally occurring uranium by mass (Rosman and Taylor, 1998), although the activity ratio of ²³⁵U to ²³⁸U is approximately 21:1. The ²¹¹Pb nucleus decays via 100% β emission to ²¹¹Bi ($T_{1/2}=2.15$ (2) min (Luca, 2010)), further decaying via α -emission (99.7% branching ratio) to ²⁰⁷Tl ($T_{1/2}=4.774$ (12) min (Kondev, 2013a)) and β -emission (0.3% branching ratio) to ²¹¹Po ($T_{1/2}=0.516$ (3) s (Luca, 2011)), which further decays to ²⁰⁷Pb by α -emission.

As noted above, as a member of the ²³⁵U decay series it is of some importance as a radiotoxic hazard in naturally occurring radioactive material and technologically enhanced naturally occurring radioactive material where the precursors of ²³⁵U, ²³¹Pa and ²²⁷Ac can accumulate through diverse industrial processes,

* Corresponding author. *E-mail address:* paris.aitken-smith@npl.co.uk (P.M. Aitken-Smith).

http://dx.doi.org/10.1016/j.apradiso.2016.01.004

especially during the refining of metal ores or crude oil (Kathren, 1998). In addition, ²¹¹Pb is the decay progeny of ²²⁷Th and ²²³Ra, which respectively are under investigation for use as a radio-pharmaceutical (Dahle et al., 2009; Heyerdahl et al., 2012) or has already been implemented as the radiopharmaceutical Xofigo^{**} (FDA News Release, 2013; EMA/CHMP, 2013). As the longest lived decay progeny it exists in transient equilibrium with ²²³Ra, an accurate value of the half-life for ²¹¹Pb is important for dose studies and ingrowth corrections over the first hours of a chemical separation from ²²⁷Th and ²²³Ra.

There have been three previous determinations of the half-life of ²¹¹Pb, by Sargent (1939), Nurmia et al. (1965) and more recently by Kossert (2015), as presented in Table 1. An IAEA Coordinated Research Project (Kellett, 2012) identified ²¹¹Pb as being in need of new half-life measurements to improve the accuracy and precision of the recommended half-life. This work describes the measurement of the half-life and presents an uncertainty budget. All uncertainties are stated as standard uncertainties or combined standard uncertainties as defined in the *Guide to the Expression of Uncertainty in Measurement* (GUM) (BIPM, 2008).

^{0969-8043/}Crown Copyright © 2016 Published by Elsevier Ltd. All rights reserved.

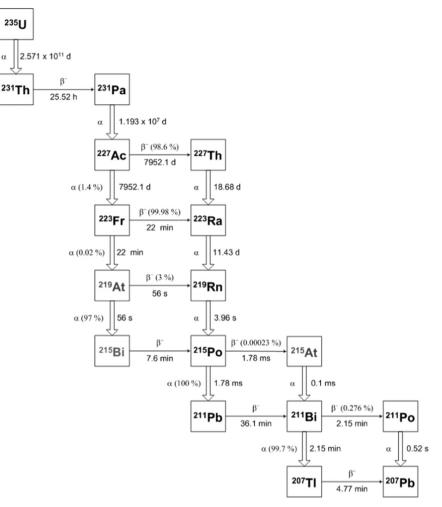


Fig. 1. Decay series of ²³⁵U.

Table 1Summary of published ²¹¹Pb half-life values.

Reference	Year	<i>T</i> _{1/2} (min)	$\sigma(T_{1/2})$ (min)
Sargent	1939	36.1	0.2
Nurmia et al.	1965	36.1	0.2
Kossert	2015	36.165	0.037
This work	2015	36.164	0.013

2. Experimental conditions

2.1. Sample preparation

A radiochemically pure ²²³Ra solution was supplied to NPL by Bayer (Norway) as RaCl₂ solution with a nominal activity of 3.2 MBq g⁻¹ at the start of the measurement campaign. Approximately 0.3 g (~1 MBq) of this solution was deposited on each of three stainless steel discs normally used for α -spectrometry measurements. The short half-life of ²¹⁹Rn ($T_{1/2}$ =3.98 (3) s (Nichols, 2011)) means that it can decay to ²¹⁵Po before diffusing out of solution, and so this is not an efficient means of collecting recoil atoms. The strategy adopted was to evaporate the ²²³Ra solution on to the stainless steel disc, providing a relatively thin deposit and to collect the recoil atoms onto three more stainless steel discs (recoil discs). The recoil discs were mounted approximately 2 mm above the ²²³Ra sources using a bespoke 3D printed sample holder and placed in a fume cupboard. A gap in the sample holder where the top and bottom sections met was apparent. This was found to result in the airflow within the fume cupboard removing ²¹⁹Rn from the region of the recoil discs and reducing the recoil atoms collected. This was remedied by wrapping adhesive tape around the sample holder.

Radon-219 diffuses from the ²²³Ra sources into the air space between the ²²³Ra source and the recoil disc, decaying to ²¹⁵Po. Due to conservation of momentum during α-decay, the recoiling nucleus of ²¹⁵Po has a kinetic energy of 0.127 MeV which was found to be sufficient to impact and implant it onto the surface of the recoil disc. Polonium-215 ($T_{1/2}$ =1.781 (4) ms (Chechev, 2011a)) rapidly decays by 100% α-decay to ²¹¹Pb (there is a very minor 0.00023% β-decay branch to ²¹⁵At ($T_{1/2}$ =0.10 (2) ms (Chechev, 2011b))). Lead-211 and ²¹⁵At both decay to ²¹¹Bi, which will reach secular equilibrium with the ²¹¹Pb within 45 min.

The recoil discs were left to accumulate ²¹⁵Po recoil atoms for approximately 4 to 16 hours before being removed and mounted in the detector. The count rates achieved from the three recoil discs after this modification was $> 7000 \text{ s}^{-1}$, with a maximum of 16,864 s⁻¹ observed, 45 min after collection. For the measurements presented in this work, a total of twelve sets of three recoil discs were produced and measured which were not found to be contaminated with ²²³Ra. In total only three discs were found to be contaminated and the measurements rejected. This contamination was traced to inadvertent contact of the tweezers, used to remove the recoil discs, with the ²²³Ra sources. Download English Version:

https://daneshyari.com/en/article/8209247

Download Persian Version:

https://daneshyari.com/article/8209247

Daneshyari.com