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H I G H L I G H T S

� Bayesian statistics provides the sole basis of recent developments in metrology.
� The original GUM now turns out to be a special case of a general methodology to quantify uncertainty.
� As a consequence the GUM is being revised in order to align it with its supplements.
� The GUM provided a basis for calculating characteristic values of measurements.
� In the course of a routine revision, ISO 11929 will be made consistent with the revised GUM.
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a b s t r a c t

The problem of uncertainty as a general consequence of incomplete information and the approach to
quantify uncertainty in metrology is addressed. Then, this paper discusses some of the controversial
aspects of the statistical foundation of the concepts of uncertainty in measurements. The basics of the ISO
Guide to the Expression of Uncertainty in Measurement as well as of characteristic limits according to ISO
11929 are described and the needs for a revision of the latter standard are explained.

& 2015 Elsevier Ltd. All rights reserved.

1. Uncertainty and measurement

Uncertainty is a general characteristic of human existence. It
originates from ignorance. The ignorance, that one does not know
what the dice will show, whether it will be a girl or a boy, whether
a wing beat of a butterfly is responsible for today's weather, when
a nucleus will decay, what the future will be, what the truth is,
which quantities influence the results of an experiment, whether
there is causal connection between two quantities, whether a
system is deterministic, stochastic or chaotic, or whether chance is
ruling the world.

Uncertainties are important characteristics of human reason-
ing, decision making and action and, in the end, they are a con-
sequence of limited and incomplete information. Humans always
have to decide and to act under uncertainty, i.e. on the basis of
incomplete information.

In the case of ignorance one can only rely on probabilities.
Uncertainty can be quantified by probabilities. James Clerk

Maxwell said in this context “The true logic for this world is the
calculus of probabilities, which takes account of the magnitude of
the probability which is, or ought to be, in a reasonable man's
mind” (Maxwell, 1850). Success decides about the truth.

A complete description of the uncertainty can be obtained by
deriving a probability density function (PDF) over the space of
possibilities. Probability theory and probability calculus provide
the tools to establish and propagate probabilities. Just a few
principles are sufficient for a given problem to derive from the
available information the desired PDF. Fundamental is the Princi-
ple of Indifference, also called Principle of Insufficient Reason
(Laplace, 1812). Given n41 distinguishable, mutually exclusive
and collectively exhaustive events, the Principle of Indifference
states that without further information each event should be as-
signed a probability equal to 1/n. The Principle of Indifference is
closely related with the Principle of Maximum Entropy (PME)
(Jaynes, 1982) and the Bayes Theorem (Bayes, 1763).

In metrology, these principles are used to quantify uncertainty
in measurement. In the 1990ties the quantification of measure-
ment uncertainties was standardized by the ISO Guide to the Ex-
pression of Uncertainty in Measurement (GUM) (ISO, 1993) and
the standard series DIN 1319 (DIN, 1996, 1999). A Bayesian theory
of measurement uncertainties (Weise and Wöger, 1993) provided a
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theoretical basis for the GUM. This basis makes uses of the Bayes
Theorem and the Product Rule to establish and propagate the
desired PDFs. After initial problems of acceptance and manifold
discussions the GUM was newly published [JCGM, 2008a] and
extended [JCGM, 2008b, 2011] by the Joint Committee on Guides
in Metrology and today represents the internationally accepted
methodology for the quantification of measurement uncertainties.

Uncertainty manifests itself in metrology as follows. By a
measurement one obtains an uncertain estimate y (measurement
result) of the unknown and unknowable true quantity value ỹ of a
measurand Y. So, the conditional probability ( ˜ )f y yY , i.e. the
probability that the true value of the measurand Y is ỹ given the
measurement result y, provides the complete description of the
uncertainty associated with the measurement result y. ( ˜ )f y yY is
the PDF of a random variable serving as an estimator of Y; as a PDF
it is normalized:∫ ( ˜ ) ˜ =

−∞

∞
f y y yd 1Y . Instead of the PDF ( ˜ )f y yY which

completely describes the uncertainty, the uncertainty can also be
described by a coverage interval [ ]< >y y, which contains the true
value of the measurand with a preselected probability (1�γ) or by
the best estimate and its associated standard uncertainty. With the
PDF ( ˜ )f y yY the best estimate ŷ of the true value ỹ is the ex-

pectation ∫^ = ( ( ˜ )) = ˜ ⋅ ( ˜ ) ˜
−∞

+∞
y f y y y f y y yE dY Y ; the variance

∫(^) = ( ( ˜ )) = ( ˜ − ^) ⋅ ( ˜ ) ˜
−∞

+∞
u y f y y y y f y y yVar dY Y

2 2 gives the standard

uncertainty (^)u y associated with the best estimate ŷ.
The PDF depends on the available information. The GUM-not so

clearly-and the GUM Supplement 1 explicitly make use of the PME
to derive various PDFs depending on the available information. If
there is more information available than y only, e.g. any other
available prior information I, the PDF completely describing the
desired probability is I I( ˜ ) = ⋅ ( ˜ )⋅ ( ˜ )f y y C f y y f y,Y Y Y . Then, the best
estimate of the true value ỹ is I^ = ( ( ˜ ))y f y yE ,Y and its associated
standard uncertainty I(^) = ( ( ˜ ))u y f y yVar ,Y

2 .

2. Probabilities and statistics

There is a persistent problem, namely that people using the
GUM are still living in two different worlds: the worlds of Bayesian
statistics and of conventional or frequentistic statistics. Though
many results obtained by the two statistics are practically equal,
the statistics themselves must not be confused with each other.
The term probability does not have the same meaning in the two
worlds of statistics. The conventional or frequentist view is that
probability is the stochastic limit of relative frequencies. The
Bayesian view is that probability is a measure of the degree of
belief an individual has in an uncertain proposition. This meaning
of probability in Bayesian statistics is the same as in the statement
that “the probability to get a six, when tossing a 6-sided dice, is 1/
6”. If asked “What is the probability of tossing a six?”, a frequentist
would answer “I do not know; I did not yet toss the dice.”

Bayesians follow the tenet that the mathematical theory of
probability is applicable to the degree to which a person believes a
proposition. Bayesians also hold that Bayes Theorem can be used
as the basis for a rule for updating beliefs in the light of new in-
formation – such updating is known as Bayesian inference; see
below. In this sense, Bayesian statistics is an application of the
probability calculus and a probability interpretation of the term
probable.

In his posthumously published “Essay towards solving a pro-
blem in the doctrine of chances”, Thomas Bayes (* 1702, † 1761)
invented the “Bayesian estimation”, i.e. calculating the probability
of the validity of a proposition on the basis of a prior estimate of its
probability and new relevant evidence (Bayes, 1763). Bayesian
estimation is the natural way of human learning: incorporating

new experience into the available set of prior assumptions. This is
also applied in a Bayesian theory of measurement uncertainties
(Weise and Wöger, 1993).

The GUM Suppl. 1 makes the clear statement that the GUM can
only work on the basis of Bayesian statistics. Frequentistic statis-
tics cannot take into account type B uncertainties. Further it only
allows establishing the conditional probability ( ˜ )f y yY but not

( ˜ )f y yY .

3. Bayesian measurement uncertainties

The Bayesian theory of measurement uncertainties (Weise and
Wöger, 1993), which provides a basis of the GUM approach, fac-
torizes the desired PDF I( ˜ )f y y,Y

I I( ˜ ) = ⋅ ( ˜ )⋅ ( ˜ ) ( )f y y C f y y f y, 1Y Y Y

and derives ( ˜ )f y yY by PME (Jaynes, 1982)

( )∫ ( ) ( )= − ˜ ⋅ ˜ = ( )S f y y f y y yln d max 2Y Y

and assumes as the only prior information that the measurand Y is
non-negative.

If only y and ( )u y are known, they are the best estimate and its
associated standard uncertainty. Thus, they give for the application
of the PME the constraints, = ( ( ˜ ))y f y yE Y and ( ) = ( ( ˜ ))u y f y yVar Y

2 .
The PME leads with these constraints to the searched PDF ( ˜ )f y y by
means of variational methods and Lagrangian multiplicators and
yields the solution ( ˜ ) = (−( ˜ − ) ( ⋅ ( ˜ )))f y y y y u yexp / 2Y

2 2 and thus:

I I ( )( ) ( ) ( )˜ = ⋅ ˜ ⋅ − ˜ − ( ⋅ ( )) ( )f y y C f y y y u y, exp / 2 3Y Y
2 2

The Gaussian distribution in Eq. (3) is neither an approximation
nor a probability distribution from repeated or counting
measurements.

If by turning the argument one assumes that only a true value ỹ
and its associated standard uncertainty ˜( ˜ )u y are known one ob-
tains the constraints ˜ = ( ( ˜ ))y f y yE Y and ˜ ( ˜ ) = ( ( ˜ ))u y f y yVar Y

2 which
yield with the PME ∫= − ( ˜ )⋅ ( ( ˜ )) =S f y y f y y yln d maxY Y the so-
lution

( )( ) ( )˜ = − ˜ − ( ⋅ ˜ ( ˜ )) ( )f y y y y u yexp / 2 . 4Y
2 2

Again, this is neither an approximation nor a probability dis-
tribution from repeated or counting measurements.

The GUM and ISO 11929:2010 are minimalistic for the purpose
of general applicability and therefore assume that only y and ( )u y
are known. This leads to the Gaussian PDF ( ˜ )f y y in Eq. (3). The
PDF describing the prior knowledge is also minimalistic, namely it
is only assumed that the measurand is non-negative. The knowl-
edge ˜ ≥y 0is then taken into account by a Heaviside function ( )H y
as PDF

I ⎪
⎪⎧⎨
⎩

( ) ( )
( )

˜ = ( ) =
˜ ≥

˜ < ( )
f y H y

y

y

const 0

0 0
.

5
Y

It must be emphasized that the user is free to take it into ac-
count more information, if it is available. Then, one has to follow
the GUM Suppl. 1 approach and to use the tools provided by the
PME, the Product Rule, and the Bayes Theorem for establishing,
updating and propagating distributions.

4. The GUM concept of uncertainty in measurement

The GUM distinguishes two ways by which measurement
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