Author's Accepted Manuscript

Development and characterization of a D-D fast neutron generator for imaging applications

Robert Adams, Lorenz Bort, Robert Zboray, Horst-Michael Prasser

DOI: http://dx.doi.org/10.1016/j.apradiso.2014.11.017

S0969-8043(14)00408-4

Reference: ARI6834

PII:

To appear in: Applied Radiation and Isotopes

Received date: 25 July 2014

Revised date: 12 November 2014 Accepted date: 21 November 2014

Cite this article as: Robert Adams, Lorenz Bort, Robert Zboray and Horst-Michael Prasser, Development and characterization of a D-D fast neutron generator for imaging applications, *Applied Radiation and Isotopes*, http://dx.doi.org/10.1016/j.apradiso.2014.11.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Development and characterization of a D-D fast neutron generator for imaging applications

Robert Adams^{a,*}, Lorenz Bort^{1a}, Robert Zboray^b, Horst-Michael Prasser^{a,b}

^aSwiss Federal Institute of Technology, Department of Mechanical and Process Engineering, Sonneggstrasse 3, 8092 Zürich, Switzerland ^bPaul Scherrer Institut, Nuclear Energy and Safety Research Department, 5232 Villigen PSI, Switzerland

Abstract

The experimental characterization of a pulsed D-D fast neutron generator designed for fan-beam tomography applications is presented. Using Monte Carlo simulations the response of an LB6411 neutron probe was related to the neutron generator output. The yield was measured to be up to ~10⁷ neutrons/s. An aluminum block was moved stepwise between the source and a BC400 plastic scintillator detector in order to measure an edge response. This edge response was related to the neutron emitting spot size using Monte Carlo simulations and a simplified geometry-based model. The experimentally determined spot size of 2.2 mm agreed well with the simulated value of 1.5 mm. The time-dependence of pulsed output for various operating conditions was also measured. The neutron generator was found to satisfy design requirements for a planned fast neutron tomography arrangement based on a plastic scintillator detector array which is expected to be capable of producing 2D tomograms with a resolution of ~1.5 mm.

Keywords: D-D neutron generator, fast neutron imaging, neutron tomography

1. Introduction

Neutron tomography is a non-destructive testing technique with applications in a wide range of fields [1]. Fast

neutrons in particular are of interest when large amounts (several cm) of hydrogenous material are being imaged in the

presence of significant quantities of high-Z material (such as steel). In such cases, cold and thermal neutrons are too

strongly attenuated to be of any practical use and X-/gamma rays provide poor contrast in the hydrogenous region due

to the much stronger attenuation by the high-Z material. This is the case, for example, in multi-phase flow test loops

representing nuclear fuel bundles or oil well environments. For such applications, a fast neutron tomography system

is being developed at the Paul Scherrer Institute (PSI) which encompasses activities related to neutron production and

detection. An overview of this work can be found in [2]. A conceptual design of a scintillator detector array for this

purpose is elaborated upon in [3]. The scintillator array design optimization was performed specifically in the context

of the neutron generator (NG) presented here. The result was an array consisting of 100 detectors expected to produce

¹Current address: High Voltage Laboratory, ETH Zürich, ETL H 34, Physikstrasse 3, 8092 Zürich

^{*}Corresponding author. Tel.: +41 44 632 49 01.

Download English Version:

https://daneshyari.com/en/article/8209811

Download Persian Version:

https://daneshyari.com/article/8209811

<u>Daneshyari.com</u>