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a b s t r a c t

An approximate elasticity solution for prediction of the displacement, stress and strain fields within the m-
layer, symmetric and balanced angle-ply composite laminate of finite-width and subjected to uniform axial
extension was developed earlier [4]. In the present paper, the authorshave extended that solution to treat ther-
mal stresses and deformations induced by a uniform change in laminate temperature. The results have
revealed not only the complex fields within the laminate, but also inter-relationships between the lamina axial
and shearing coefficients of thermal expansion and the effective laminate coefficients of thermal expansion.
Further, the solution is shown to recover laminated plate theory predictions for thermally induced fields at
interior regions of the laminate, thereby confirming the boundary layer nature of the interlaminar phenomena
for the thermoelastic case. Finally, the resultsexhibit the anticipated response in congruence with the mechan-
ical solution of Ref. [4] and the thermoelastic results satisfy the conditions of self-equilibration necessary for
the finite-width laminate subjected to free thermal deformation. Integration of the stress rx over the laminate
cross-section in the y–z plane is shown to converge to zero as the number of Fourier terms is increased. While
the exact solution for mechanical loading is known to exhibit singular behavior, non-convergence of the inter-
laminar shearingstrain is also seen to occur at the intersection of the free edge and planes between lamina of +h
and�h orientation under thermal loading. The analytical results show excellent agreement with the finite-ele-
ment predictions for the same boundary-value problem.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The investigation of interlaminar phenomena in composite lam-
inates has been underway for many years by numerous investiga-
tors including one of the authors of the present study [1–6]. A
comprehensive and exhaustive review of this subject by Mittel-
stedt and Becker is presented in Ref. [6]. Notable references from
that work dealing with free edge effects in the angle-ply laminate
include [8–11]. Several earlier works also discuss free edge effects
due to thermal loading, namely [12–15]. While the development in
Ref. [5] is comprehensive in its ability to treat the general symmet-
ric laminate, the more restricted model presented in the following
work provides a solution for the symmetric angle-ply laminate that
can be directly employed by practitioners who lack the advanced
mathematical methods of Mittlestedt and Becker.

The earliest of the investigations of free-edge phenomena in
composite laminates focused on the behavior of the finite-width
laminate subjected to uniform axial extension [1]. The mechanism
of interlaminar load transfer near the free-edge revealed that inter-

laminar stresses developed within a boundary-layer near the free
edge for laminates consisting of an equal number of lamina of +h
and �h orientation with respect to the axial direction and arranged
symmetrically about the laminate mid-plane. The interlaminar
phenomenon for these laminates, typically referred to as ‘‘angle-
ply” laminates, involved three primary stress components: the ax-
ial stress, rx, the in-plane shearing stress, sxy and the interlaminar
shearing stress, sxz, where x is the laminate axial direction, y is the
laminate transverse direction and z is the laminate thickness coor-
dinate, as shown in Fig. 1. Here the components u, v and w describe
the displacement components in the x, y and z directions.

Near the free-edge of the angle-ply laminate, a gradient in the
in-plane shear stress is developed as a result of the traction free
boundary condition requiring the in-plane shear stress to vanish
at the edge. Further, the gradient in the in-plane shearing stress
within the boundary-layer near the free-edge of each of the lamina
also required a gradient in the interlaminar shearing stress in the
thickness coordinate, z, to satisfy the equilibrium equation in the
axial direction. If the stress components are taken as independent
of the axial coordinate, x, then an interlaminar shearing stress is
shown to be induced by the gradient in-plane shearing stress.
However, it is important to note that the in-plane shearing stress
within each of the lamina is the result of the shear-coupling terms
with compliance matrix, Si6 (i = 1–3) of the individual lamina and
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that the lamina shear coupling compliance terms are a function of
the fiber orientation, h.

2. Thermoelastic theoretical development

Consider an anisotropic material with a single plane of elastic
symmetry. The components of the engineering stress and strain
are related through the Sij(i,j = 1–6), terms of the elasticity compli-
ance matrix and the Cij(i,j = 1–6), terms of the elasticity stiffness
matrix as shown in Eqs. (1)a–b. The stiffness and compliance ma-
trix terms are also functions of the lamina orthotropic material
properties and fiber orientation of each lamina:
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When the stress components are assumed independent of the ax-
ial coordinate, x, it has been shown that the displacement–equilib-
rium equations may be represented in the following form where
the displacements U, V and W are functions only of the transverse
coordinates y and z [1], where the comma denotes partial
differentiation.

C66U;yy þ C55U;zz þ C26V ;yy þ C45V ;zz þ ðC36 þ C45ÞW;yz ¼ 0 ð2aÞ
C26U;yy þ C45U;zz þ C22V ;yy þ C44V ;zz þ ðC23 þ C44ÞW;yz ¼ 0 ð2bÞ
ðC45 þ C36ÞU;yz þ ðC23 þ C44ÞV ;yz þ C33W;zz ¼ 0 ð2cÞ

For the angle-ply laminate, Eqs. (2)a–c reduce to a single, sepa-
rable partial-differential equation when the laminate is subjected
to uniform axial extension [4]. The primary assumptions in this

Nomenclature

Symbol Term
b coefficient
s coefficient (m)
a1, a2, a3 lamina coefficients of thermal expansion (1/�C)
ax, ay, axy coefficients of thermal expansion (1/�C)
�ax; �ay; �az laminate coefficients of thermal expansion (1/�C)
rx, ry, rz normal components of the stress tensor (Pa)
sxy, sxz,syz

shearing components of stress tensor (Pa)
ex, ey, ez normal components of the strain tensor
cxy, cxz, cyz shearing components of the strain tensor
h angle between x and 1 axes (�)
Cij elasticity stiffness matrix (GPa)

Sij elasticity compliance matrix (GPa�1)
h0 lamina thickness (m)
b laminate half width (m)
c cos h
m number of lamina
n number of Fourier terms
s sin h
U(y,z) axial displacement function of y and z (m)
V(y,z) transverse displacement function of y and z (m)
W(y,z) normal displacement function of y and z (m)
U,y derivative of U with respect to y
U,z derivative of U with respect to z
DT change in temperature (�C)

Fig. 1. Boundary value problem.
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