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a b s t r a c t

A 3D matrix failure algorithm based upon Puck’s failure theory has been developed. The problem of cal-
culating the orientation of a potential fracture plane, which is necessary to assess the onset of matrix fail-
ure, has been addressed. Consequently, a fracture angle search algorithm is proposed. The developed
algorithm incorporates a numerical search of function extremes which minimises the required computa-
tional time for finding the accurate orientation of a potential fracture plane. For illustration, the algorithm
together with the three-dimensional Puck failure model has been implemented in LS-DYNA explicit FE
code. The fracture angle search algorithm is verified using a virtual uniaxial compression test.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The development of physically based failure criteria for inter fi-
bre failure (IFF) in long fibre-reinforced polymer composites has
been the focus of research for many years. The first promising ap-
proach was proposed by Hashin [1] in 1980, who developed failure
criteria for plane stress based on the Mohr Coulomb failure theory.
The criteria stated that failure was caused by the stresses acting on
an inclined fracture plane. However, Hashin did not pursue the cal-
culation of the orientation of that plane because of the required
computational effort. Further sound physical basis of the failure
theory was posed by Puck [2] who extended the model, which
now distinguishes three IFF modes: (a) a tensile and (b) a compres-
sive shear matrix failure, in both of which the crack is perpendicu-
lar to direction 2–2, as well as (c) a more complex failure mode in
which the fracture plane rotates about 1–1 axis to form a wedge
which can cause fibre failure in adjacent layers. Further sugges-
tions for an extension to a 3D state of stress were made in [2].
An extensive experimental study in [3] verified the failure criteria
for cases with plane stress states and three-dimensional states of
stress.

Initially, Puck’s model was not well recognised in the research
community. The reason was the large number of unknown param-
eters and the computationally expensive search of the fracture
plane orientation. In order to simplify the application of the failure
model, Puck proposed pragmatic solutions for some of the param-

eters in [4]. As the theory was ranked very highly in the world wide
failure exercise (WWFE) [5,6] the model attracted additional atten-
tion and further development was undertaken by Davila and Cam-
anho [7], Pinho et al. [8] and Greve and Pickett [9].

The computationally expensive search for the angle of the frac-
ture plane still remains a limiting factor. The application of the
model in explicit finite element analysis (FEA) requires a reliable,
accurate, yet numerically efficient fracture plane orientation
search algorithm. For plane stress, analytical formulations are al-
ready available [4]. The fracture angle for three-dimensional states
of stress, however, cannot be expressed in a closed form. Therefore,
a numerical search procedure needs to be employed. So far, no effi-
cient algorithms for finding the fracture plane angle for three-
dimensional states of stress have been proposed in open literature.

This paper introduces a computationally efficient fracture angle
search algorithm of a full 3D Puck failure theory for IFF. The algo-
rithm has been verified using a virtual uniaxial compression test
and the capabilities of the overall model have been presented.

2. The Puck failure criterion for IFF

The Puck IFF criteria are valid for UD composite laminates. The
UD ply is treated as transverse isotropic and is assumed to behave
in a brittle manner. The key idea of the Puck failure model is the
assumption of a Mohr–Coulomb type of failure for loading trans-
verse to the fibre direction. Failure is assumed to be caused by
the normal and shear stresses which are acting on the stress action
plane (rn, sn1 and snt, see Fig. 1). Positive normal stress on this
plane promotes fracture while negative normal stress increases
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the material’s shear strength thus impeding fracture. Pucks stress
based failure criteria enable the calculation of the material expo-
sure e as a failure indicator. Failure occurs under the following
condition

e ¼ 1: ð1Þ

The values of e range between 0 (which denotes that material is
not loaded) to 1 (which denotes the onset of IFF). A material expo-
sure above 1 is physically inadmissible and denotes the initiation
of damage of the material. The material exposure e is a function
of the stress state r and the orientation of the stress action plane
against the thickness direction h.

eðh;rÞ ð2Þ

Fracture will occur on the stress action plane where e(h,r) has a
global maximum. This plane is called the fracture plane. The angle
of the fracture plane is called the fracture angle hfr. The definition
of fracture plane and fracture angle hfr is illustrated in Fig. 1.

Puck’s criteria define a master failure surface on the fracture
plane. Only the stresses which act on that plane (Mohr’s fracture
plane stresses rn, sn1 and snt) are assumed to contribute to IFF.
The fracture plane stresses are obtained by rotating the three-
dimensional stress tensor from material coordinates to the fracture
plane. The relationship between the stresses in the ply coordinate
system and the Mohr stresses in the inclined fracture plane reads
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with

c ¼ cosðhfrÞ
s ¼ sinðhfrÞ

ð4Þ

From Fig. 1 it can be seen that only rn, sn1 and snt contribute to IFF.
The fracture plane tractions are given by

rn ¼ r22 cos2 hfr þ r33 sin2 hfr þ 2r23 cos hfr sin hfr;

sn1 ¼ r12 cos hfr þ r13 sin2 hfr

snt ¼ �r22 sin hfr cos hfr þ r33 sin hfr cos hfr þ r23ðcos2 hfr � sin2 hfrÞ:
ð5Þ

From Eq. (5) it is clear that all components of stress tensor, except
r11, contribute to IFF.

The master failure surface on the fracture plane is defined in
terms of Mohr-Coulomb fracture plane stresses thus yielding the
following failure criteria

e ¼ rn

Rn

� �2

þ sn1

Rn1 � pn1rn

� �
þ sn1
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¼ 1 for rn � 0

e ¼ sn1
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� �2

þ sn1
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� �2

¼ 1 for rn < 0

ð6Þ

In order to evaluate Eq. (6) it is essential that hfr is known. The
parameters in Eq. (6) are defined as follows (see [4]):

�Rn: resistance of the fracture plane against normal failure
�Rn1, Rnt: resistance of the fracture plane against shear
�pn1, pnt: slope parameters representing internal friction effects
(Mohr–Coulomb type of failure).

Unlike traditional failure criteria, Puck uses fracture plane resis-
tances R. The fracture plane resistance is the resistance of the
material against fracture caused by only one component of stress
acting on that plane [4]. Two of these values can be obtained di-
rectly from simple uniaxial or shear experiments and are identical
to the respective strength properties

Rn ¼ Yt;

Rn1 ¼ S12:
ð7Þ

The fracture plane resistance Rnt usually cannot be measured di-
rectly. The reason is, that unidirectional fibre-reinforced composite
materials (e.g., GFRP CFRP) when subjected to a pure transverse
shear loading (r23) fail at an angle hfr = 45�. In order to assume
Rnt = S23 the failure must happen in the same plane where r23 is
acting as a single stress (e.g., hfr = 0� or hfr = 90�). In fact, what could
be measured as shear strength S23 denotes not a pure shear failure,
but a failure due to single normal tensile stress acting on the frac-
ture plane [2] (see stress state1 in Table 2). Puck proposes to calcu-
late Rnt from uniaxial compression tests. Specimens loaded
uniaxially transverse to the fibre tend to fail by a shear failure on
a fracture plane which is inclined by h0

fr . This and the experimen-
tally observed compressive stress at failure Yc allow calculating
the stress state at failure on the fracture plane. Further assumption
of a Mohr–Coulomb type failure allows for the shear stress at fail-
ure snt to be obtained in the case of rn = 0. This is the missing frac-
ture plane resistance Rnt (see Eq. (8)).

The slope parameters pn1 and pnt characterise the slope of the
fracture envelope at rn = 0 and can be derived experimentally by
combined loading experiments [4].

The experimental data necessary to define fully the failure sur-
face is usually not available. Puck gives some pragmatic solutions
for the parameters to be derived from simple uniaxial compression
experiments [4]. The ‘‘missing” parameters are evaluated as follows:

Rnt ¼
Yc

2 tan h0
fr

;

pnt ¼ �
1

2 tanð2h0
frÞ

pn1 ¼ pnt
Rn1

Rnt

ð8Þ

This fully defines the master failure surface. An example of a
master failure surface obtained using the data in Table 1 is plotted
in Fig. 2. The failure surface is open for negative rn because com-
pressive stress rn impedes IFF.

Fig. 1. Definition of the fracture plane by the fracture angle hfr for the Puck IFF
model.

Table 1
Typical properties for a carbon epoxy composite [3]

Tensile strength 2 direction Yt 59.1 MPa
Compressive strength 2 direction Yc 231.2 MPa
In plane shear strength S12 98.4 MPa
Fracture angle for pure compression h0

fr 51�
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