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a b s t r a c t

Flax fibres are finding non-traditional applications as reinforcement of composite materials. The mechan-
ical properties of fibres are affected by the natural variability in plant as well as the damage accumulated
during processing, and thus have considerable variability that necessitates statistical treatment of fibre
characteristics. The strength distribution of elementary flax fibres has been determined at several fibre
lengths by standard tensile tests, and the amount of kink bands in the fibres evaluated by optical micros-
copy. Strength distribution function, based on the assumption that the presence of kink bands limits fibre
strength, is derived and found to provide reasonable agreement with test results.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The efficiency of fibre reinforcement in a composite material is
determined primarily by the mechanical characteristics of rein-
forcing fibres and their adhesion to matrix. Natural fibres have
been shown to possess higher scatter of the mechanical properties
than the man-made ones [1–4]. While the scatter of fibre stiffness
exerts limited effect on composite properties, fibre strength distri-
bution affects both strength and toughness of a composite. Weak-
est-link character of fibre failure is reflected in the commonly used
Weibull two-parameter distribution of fibre strength, based on the
seminal work [5]

FðrÞ ¼ 1� exp � l
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where l stands for fibre length, l0 is a normalizing parameter, r is
the tensile stress at fibre failure, and a0, b0 designate Weibull shape
and scale parameters, respectively. Fibre length rather than volume
is typically used as the scale variable in Eq. (1) due to limited scatter
of fibre diameters of inorganic fibres. Natural fibres exhibit more
pronounced variability of geometrical characteristics that, to some
extent, also affects their strength [3,6,7]. However, for comparabil-
ity and convenience, Eq. (1) is frequently applied also to describe
the strength distribution of natural fibres.

The values of the shape parameter a0, characterizing the scatter
of strength, range from 2 to 4.3 for elementary flax fibres of 5 to
20 mm length extracted from green and dew-retted flax
[1,2,4,8,9], being consistently lower than those of glass fibres of
comparable dimensions obtained by the same specimen prepara-
tion and tension test procedure (see e.g. [10]). Thus the higher
strength variability is likely to be caused by factors intrinsic to flax
fibre.

It has been shown that the two-parameter Weibull distribution,
Eq. (1), may not comply with the experimental data of flax fibre
strength variation with gauge length [1,2]. Instead, the modified
Weibull distribution

FðrÞ ¼ 1� exp � l
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with 0 6 c 6 1 is found to agree with elementary flax fibre strength
[1]. The physical origin of the distribution Eq. (2) is thought to be
related to inter-fibre variation of strength characteristics. Namely,
Weibull distribution Eq. (1) follows from the assumption that the
distribution of critical flaws along the fibre is a homogeneous Pois-
son process with intensity K being a power function of stress,
K � ra0 , identical for all the fibres of a given batch. However, the
production process of man-made fibres can introduce a different
damage intensity K in each fibre that manifests as a larger scatter
of strength among fibres than between different segments sampled
along a fibre. One could expect a similar variability in damage level
among agrofibers stemming from differing growth and processing
histories of individual fibres. The strength of such a fibre batch does
not comply with Eq. (1) but can be approximated by Eq. (2) (see e.g.
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the discussion of fibre strength issues in [11,12]). It has been dem-
onstrated by numerical modelling [13] and experimentally [10] that
the distribution Eq. (2) for a fibre batch is obtained if each of the fi-
bres possesses Weibull strength distribution Eq. (1), but the param-
eters of Weibull distribution for individual fibres differ. In [14] the
appearance of strength distribution given by Eq. (2) is attributed to
the presence of a large-scale fluctuation of the density of defects
(flaws) in fibres.

Elementary flax fibres may contain cell-wall defects, i.e. local
misalignments of cellulose microfibrils, originating during growth
and processing of flax. Such defects are variously called disloca-
tions, kink bands, nodes, or slip planes [15,16]. Kink bands are seen
in polarized light microscopy [17] as bright zones crossing fibre
and oriented roughly perpendicularly to its axis. The largest of
them can also be discerned without polarizers as seen in Fig. 1.
The effect of such defects on fibre strength is a subject of contro-
versy. No correlation between the number of kink bands in a fibre
and its tensile strength has been found in [18] for flax. Similarly,
the relative fraction of kink bands in hemp fibres did not correlate
appreciably with their strength and modulus [17]. Nevertheless, it
has been argued that flax fibre strength is reduced by the presence
[9] and amount [8] of kink bands. There is also experimental evi-
dence of flax fibre failure in tension initiating within a kink band
[16,18,19]. Therefore it appears reasonable to introduce a strength
distribution function that accounts for the presence of kink bands
in the fibre.

Notably, in one of the original derivations of the weakest link
strength distribution presented in [5], the number of defects per
unit volume was treated as a continuous variable when obtaining
an analogue of Eq. (1). As opposed to such a continuum approach
to the effect of defects, a weakest-link strength distribution has
also been derived assuming that a discrete, finite number of defects
is present in a body [20]. Distribution functions combining the fea-
tures of weakest link and random defect models have been pro-
posed and applied to describe fibre strength scatter [21,22].
Approximation of flax fibre strength data by defect-based distribu-
tion functions has also proved successful [22–24].

In this study, we derive a strength distribution function explic-
itly accounting for the presence of defects in fibres and evaluate its
applicability to elementary flax fibre strength data at different
gauge lengths.

2. Experimental

Two types of elementary flax fibres are considered. The fibres
produced by FinFlax Oy (Finland) are designated by A and those
produced by Ekotex (Poland) by B in the following. The details of
experimental procedure and strength test results have been pre-
sented in [1] for fibres A and in [23] for fibres B. For completeness
and convenience, we briefly recapitulate them below.

The test procedure of ASTM D 3379-75 standard was followed.
Single fibres were manually separated from fibre bundles. Fibre
ends were glued onto a paper frame. Three gauge length specimens
were prepared with free fibre length of 5, 10 or 20 mm respec-
tively. Tension tests were carried out on an electromechanical ten-
sile machine equipped with mechanical grips. During mounting
the specimens were handled only by the paper frame. Upon clamp-
ing of the ends of the paper frame by grips of the test machine,
both sides of the frame were carefully cut in the middle. The tests
were displacement-controlled with the loading rate of 0.5 mm/min
for fibres A, and loading rate of 10%/min for fibres B.

Fibre diameter was evaluated from observations under optical
microscope or micrographs as the average of five apparent diame-
ter measurements taken at different locations along the fibre. The
mean values and standard deviations of the fibre diameters at each
gauge length are presented in Table 1. The mean diameter appears
not to depend, within scatter, on gauge length, being slightly but
consistently smaller for fibres A. The empirical fibre strength distri-
butions for fibres A and B are presented in Fig. 2. The fracture prob-
abilities have been evaluated via the median rank of the measured
strength values using the following approximation:

P ¼ i� 0:3
nþ 0:4

ð3Þ

where i is the ith number in ascendingly ordered strength data of
the sample and n is the sample size (i.e. the number of tests per-
formed on fibres of given type and gauge length).

Micrographs of fibre B revealing the presence of kink bands are
shown in Fig. 1. Virtually all the kink bands extended over the
whole fibre width, varying only in their extent along the fibre axis.
Such kink bands, spanning fibre width, were counted in a number
of fibres of l = 5 mm gauge length by means of optical microscopy.
Olympus BX51 microscope with crossed polarizers was used. The
spacing, s, of kink bands in each fibre was evaluated as s = l/k,
where k is the number of kink bands in the fibre. The spacing dis-
tributions are shown in Fig. 3 for fibres A and Fig. 4 for fibres B. The
empirical probabilities for spacings were evaluated by Eq. (3).

3. Defect-governed fibre strength distribution

3.1. Limited number of defects

Consider a fibre containing a random number, k, of defects with
distribution mass function pk. The distribution of defect strength
(i.e. the stress at which fibre would break at a given defect) is des-
ignated by Fd(r), while the strength distribution of defect-free fibre
is Fnd(r). Then the survival probability of the fibre is given by the
product of corresponding probability for defect-free fibre,
1 � Fnd(r), and that for survival of all the defects. The latter is

Fig. 1. Kink bands in an elementary flax fibre as revealed by optical microscopy in
transmitted polarized (a) and non-polarized (b) light in the same fibre fragment.
(fibre diameter is ca. 23 lm).

Table 1
Mean value (and standard deviation) of diameter, in microns, of elementary fibres at
different gauge lengths.

Fibre/gauge length 5 mm 10 mm 20 mm

A 14.4 (3.2) 16.4 (3.5) 15.8 (3.7)
B 20.6 (5.0) 17.3 (3.7) 16.9 (2.4)
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