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a b s t r a c t

The Voigt estimation or the rule of mixture has been believed to be the upper bound of the effective
Young’s modulus of composites. However, this is only true in the situations where the Poisson effect is
not significant. In this paper, we accurately derived the effective compliance matrix for two-phase lay-
ered composites by accounting for the Poisson effect. It is interesting to find that the effective Young’s
modulus in both transverse and longitudinal direction can exceed not only the Voigt estimation, but also
the Young’s modulus of the stiffest constituent phase. Moreover, the longitudinal (or parallel connection)
Young’s modulus is not always larger than the transverse (or serial connection) one. For isotropic com-
posites, it has also been demonstrated that the Voigt estimation is not the upper bound for the effective
Young’s modulus. Therefore, one should be careful in applying the well known bound estimations on the
effective Young’s modulus of composites if one of the phases is near its incompressibility limit.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The upper and lower bounds for the effective stiffness of two-
phase composites have been studied for a long time. Among these
works, Voigt [1] adopted isostrain assumption to obtain the estima-
tion of the effective composite stiffness matrix as the weighted vol-
ume average of the stiffness matrices of constituent phases. Based
on the isostress assumption, Reuss [2] estimated the effective com-
posite compliance matrix as the weighted volume average of the
compliance matrices of constituent phases. Hill [3] has proven that
for isotropic constituent phases and composites, Voigt estimation
and Reuss estimation, respectively, provide the upper and lower
bounds for the effective bulk and shear moduli of composites.

Although the upper and lower bounds of the effective Young’s
modulus of composites are not given explicitly in previous works,
two special composite layouts (serial connection as shown in Fig. 1
and parallel connection as shown in Fig. 2) are always used in
many textbooks and literatures (e.g., Ref. [4]) to investigate these
bounds. The constituent phases are isotropic elastic with Young’s
moduli EA and EB, volume fractions UA and UB, respectively.

By neglecting the Poisson effects, the serial and parallel layouts
are essentially one-dimensional models, and satisfy the isostrain
(Voigt) and isostress (Reuss) conditions. Based on Hill’s work [3],
the bounds for the Young’s modulus of the composite Ecomposite

therefore can be given as

~EReuss 6 Ecomposite 6
~EVoigt; ð1Þ

where

1
~EReuss

¼ UA

EA
þUB

EB
; or ~EReuss ¼

EAEB

UAEB þUBEA
; ð2Þ

and

~EVoigt ¼ UAEA þUBEB: ð3Þ

Here, the overhead tildes in ~EReuss and ~EVoigt mean that these effec-
tive moduli only approximately satisfy Reuss (isostress) and Voigt
(isostrain) conditions due to the neglecting of the Poisson effect.

Based on Eqs. (1)–(3), the following inequalities can be derived
and have been widely considered valid for any situation.

Inequality I

Ecomposite 6
~EVoigt ¼ UAEA þUBEB ð4Þ

implies that the approximate Voigt estimation ~EVoigt, i.e., the
weighted volume average of the Young’s modulus of constituent
phases, can be used as the upper bound of the effective Young’s
modulus of the composite.

Inequality II

Eeff
z ¼ Eserial

composite 6 Eparallel
composite ¼ Eeff

x ð5Þ

implies that the longitudinal (or parallel) stiffness of a layered com-
posite Eeff

x is always larger than the transverse (or serial) stiffness
Eeff

z (see Figs. 1 and 2).
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Inequality III

Ecomposite 6 maxðEA; EBÞ ð6Þ

implies that the composite cannot be stiffer than its stiffest constit-
uent phase.

However, previous studies [5–7] have shown that Poisson effect
sometimes can play a very crucial role in the mechanical properties
of composites, and should not be ignored. In particular, Liu et al. [5]
found that the transverse stiffness of quasi-layered composites is
significantly underestimated by the Reuss estimation. Therefore,
the purpose of this paper is to investigate the influence of the Pois-
son effect on the bounds for the Young’s modulus of composites
and to check the validness of these inequalities Eqs. (1), (4)–(6),
which are derived without considering the Poisson effect.

In this paper, a two-phase layered composite as shown in Fig. 1
is used as a specific example to study the Poisson effect. Due to its
simple topology, the compliance matrix can be accurately derived
without any approximation.

2. The accurate estimation on the stiffness of a two-phase
layered composite

Obviously, the layered composite shown in Fig. 1 is a transver-
sally isotropic material, and the x–y plane (see Fig. 1) is the isotro-
pic plane. There are five independent elastic constants for a
transversally isotropic material, and the constitutive relation for
the composite in terms of the effective compliance matrix is

�ex

�ey

�ez

�cyz

�czx

�cxy

2
666666664

3
777777775
¼

Seff
11 Seff

12 Seff
13 0 0 0

Seff
22 Seff

23 0 0 0

Seff
33 0 0 0

Seff
44 0 0

ðsymmÞ Seff
55 0

Seff
66

2
66666666664

3
77777777775

�rx

�ry

�rz

�syz

�szx

�sxy

2
666666664

3
777777775
; ð7Þ

where �ex �ey �ez �cyz �czx �cxy½ �T and �rx �ry �rz �syz �szx �sxy½ �T

are the strains and stresses of composites, respectively. For trans-
versally isotropic material, the components of the compliance ma-
trix have the following relations due to the symmetry,

Seff
11 ¼ Seff

22 ; Seff
13 ¼ Seff

23 ; Seff
44 ¼ Seff

55 ; Seff
66 ¼ 2ðSeff

11 � Seff
12 Þ: ð8a—dÞ

The superscript ‘‘eff” in this paper implies the effective quantities
for composites.

To obtain the elastic constants of the composite, we apply three
loadings to the representative volume element (RVE) shown in
Fig. 1 and then compute the deformation.

2.1. The layered composite under transverse compression (only �rz–0)

It is easy to know that under the normal compression (see
Fig. 1), the stress and the strain in each phase of RVE are uniform,
and they should satisfy the following equations:

Constitutive equations:

eA
x ¼

1
EA

rA
x � mArA

y � mArA
z

� �
; ð9Þ

eA
y ¼

1
EA
ðrA

y � mArA
x � mArA

z Þ; ð10Þ

eA
z ¼

1
EA
ðrA

z � mArA
x � mArA

yÞ; ð11Þ

eB
x ¼

1
EB
ðrB

x � mBrB
y � mBrB

z Þ; ð12Þ

eB
y ¼

1
EB
ðrB

y � mBrB
x � mBrB

z Þ; ð13Þ

eB
z ¼

1
EB
ðrB

z � mBrB
x � mBrB

yÞ: ð14Þ

Here, r and e are stress and strain; E and v are Young’s modulus and
Poisson ratio; the superscripts or subscripts ‘‘A” and ‘‘B” denote
phase A and phase B, respectively. It is noted that there is no shear
stress and strain in this situation, so they are not included in the
equations above.

Equilibrium equations:

�rx ¼
hArA

x þ hBrB
x

hA þ hB
¼ 0; ð15Þ

�ry ¼
hArA

y þ hBrB
y

hA þ hB
¼ 0; ð16Þ

�rz ¼ rA
z ¼ rB

z : ð17Þ

Here, hA and hB are the layer thickness of phase A and phase B
(see Fig. 1), respectively.

Kinematic equations:

�ex ¼ eA
x ¼ eB

x ; ð18Þ
�ey ¼ eA

y ¼ eB
y ; ð19Þ

�ez ¼
eA

z hA þ eB
z hB

hA þ hB
: ð20Þ

By solving Eqs. (9)–(20), we can compute the Young’s modulus
along z-direction (or transverse direction) as

Eeff
z ¼

1

Seff
33

¼
�rz

�ez
¼ EAEB

UAEB þUBEA � 2UAUBðmAEB�mBEAÞ2
ð1�mAÞUBEBþð1�mBÞUAEA

; ð21Þ

where UA ¼ hA=ðhA þ hBÞ and UB ¼ hB=ðhA þ hBÞ are the volume frac-
tions of phase A and phase B, respectively. It should be pointed out
that all derivations in this paper have been checked by the mathe-
matical software Maple. Another compliance component can also
be obtained from this loading situation

Seff
13 ¼

�ex

�rz
¼ UAmA þUBmB � mAmB

UAmBEA þUBmAEB �UAEA �UBEB
: ð22Þ

Remark 1. The assumptions used in the Reuss (isostress) approx-
imation are essentially rA

x ¼ rB
x ¼ 0 and rA

y ¼ rB
y ¼ 0, which are too
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Fig. 1. A schematic diagram of a layer composite under transverse compression.
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Fig. 2. A schematic diagram of a layer composite under longitudinal tension.
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