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Abstract

In this paper, crack analysis in two-dimensional (2D), continuously nonhomogeneous, isotropic and linear elastic functionally graded
materials (FGMs) is presented. For this purpose, a boundary element method (BEM) based on a boundary-domain integral equation
formulation is developed. An exponential variation with spatial variables is assumed for Young’s modulus of the FGMs, while a constant
Poisson’s ratio is considered. Fundamental solutions for homogeneous, isotropic and linear elastic solids are applied in the formulation.
To avoid displacement gradients in the domain integral, normalized displacements are introduced. By using the radial integration
method, the domain integral is transformed into boundary integrals over the global boundary. The normalized displacements in the
domain integral are approximated by a combination of radial basis functions and polynomials in terms of global coordinates, which
leads to a meshless scheme. Special attention of the analysis is devoted to the computation of the most important crack-tip characterizing
parameters of cracked FGMs, namely the stress intensity factors. To show the effects of the material gradation on the stress intensity
factors, numerical examples are presented and discussed.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, a new class of composite materials, the
so-called functionally graded materials (FGMs), attracted
many research interests in materials and engineering sci-
ences [1,2]. FGMs are advantageous over classical homoge-
neous materials with only one material constituent, because
FGMs consist of more material constituents and they com-
bine the desirable properties of each constituent. As a rep-
resentative example for FGMs, we just mention the metal/
ceramic FGMs, which are compositionally graded from a
ceramic phase to a metal phase. Metal/ceramic FGMs
can incorporate advantageous properties of both ceramics
and metals such as the excellent heat, wear, and corrosion
resistances of ceramics and the high strength, high tough-

ness, good machinability and bonding capability of metals
without severe internal thermal stresses. However, ceramics
have a brittle nature, and microcracks or crack-like defects
are often induced in the fabrication process or under the in-
service loading conditions. Thus, fracture and fatigue anal-
ysis of FGMs is an important research issue to the design,
optimization, and novel engineering applications of FGMs.
For cracked FGMs with general geometry and loading
conditions, advanced numerical methods have to be
applied, because of the high mathematical complexity of
the corresponding governing partial differential equations
with variable coefficients, and because the most available
analytical methods can be successfully applied to cracked
FGMs only with very simple geometry and loading condi-
tions. In this context, we just mention the singular integral
equation method [3–7], the classical finite element method
(FEM) [8–15], the graded finite element method [16–19],
the extended finite element method (XFEM) [20], the ele-
ment-free Galerkin method (EFG) [21,22], the boundary

0266-3538/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.compscitech.2007.08.029

* Corresponding author. Tel.: +49 271 7402173; fax: +49 271 7404074.
E-mail address: c.zhang@uni-siegen.de (Ch. Zhang).

www.elsevier.com/locate/compscitech

Available online at www.sciencedirect.com

Composites Science and Technology 68 (2008) 1209–1215

COMPOSITES
SCIENCE AND
TECHNOLOGY

mailto:c.zhang@uni-siegen.de


integral equation method (BIEM) or boundary element
method (BEM) [23–27], and the meshless Petrov–Galerkin
method (MLPG) [28–31].

Although the BEM has been successfully applied to
homogeneous, isotropic and linear elastic solids for many
years, its application to FGMs is yet very limited due the
fact that the corresponding fundamental solutions or
Green’s functions for general FGMs are either not avail-
able or mathematically too complex [32,33]. The nonhomo-
geneous nature of FGMs prohibits an easy construction
and implementation of fundamental solutions for general
FGMs.

In this paper, crack analysis in 2D, continuously nonho-
mogeneous, isotropic and linear elastic FGMs is presented.
For this purpose, a boundary-domain integral equation
formulation is applied. For simplicity, an exponential var-
iation of Young’s modulus and constant Poisson’s ratio are
assumed. Fundamental solutions for homogeneous, isotro-
pic and linear elastic solids are applied in the present for-
mulation, which results in a boundary-domain integral
equation formulation due to the materials nonhomogene-
ity. To avoid displacement gradients in the domain inte-
gral, normalized displacements are introduced. The radial
integration method of Gao [34,35] is applied to convert
the arising domain integral into boundary integrals over
the global boundary of the cracked solids. Basis functions
consisting of a combination of radial basis functions and
polynomials in terms of global coordinates are used to
approximate the normalized displacements in the domain
integral. In this manner, a meshless scheme is obtained,
which requires only conventional boundary discretization
and additional interior nodes instead of cells or meshes.
An advantage of the present BEM is that it is easy to imple-
ment and can be easily incorporated into an existing BEM
code for homogeneous, isotropic and linear elastic solids.
Special attention of the analysis is devoted to the investiga-
tion of the material gradation on the stress intensity fac-
tors. Numerical examples for cracks parallel and
perpendicular to the material gradation are presented and
discussed.

2. Boundary-domain integral equations

We consider 2D, continuously nonhomogeneous, isotro-
pic and linear elastic FGMs. In the absence of body forces,
the equilibrium equations are given by

rij;j ¼ 0; ð1Þ

where rij represents the stress tensor, a comma after a
quantity represents spatial derivatives and repeated indexes
denote summation. It is assumed that the Young’s modulus
EðxÞ of the FGMs depends on Cartesian coordinates while
Poisson’s ratio m is constant. In this case, the elasticity ten-
sor CijklðxÞ can be written as

CijklðxÞ ¼ lðxÞC0
ijkl; ð2Þ

where

lðxÞ ¼ EðxÞ
2ð1þ mÞ ; C0

ijkl ¼
2m

1� 2m
dijdkl þ dikdjl þ dildjk:

ð3Þ

In Eqs. (2) and (3), lðxÞ denotes the shear modulus and dij

represents the Kronecker delta.
The stress tensor rij and the displacement gradients

uk;l ¼ @uk=@xl are related by the generalized Hooke’s law

rij ¼ Cijkluk;l ¼ lðxÞC0
ijkluk;l: ð4Þ

The traction vector ti on the boundary of the considered
domain is related to the stress components by

ti ¼ rijnj; ð5Þ
where nj is the outward unit normal vector to the boundary
C of the domain X.

The weak-form of the equilibrium Eq. (1) can be written
asZ

X
rjk;k � U ijdX ¼ 0; ð6Þ

where Uijðx; yÞ is the weight or test function. Substitution
of Eq. (4) into Eq. (6) and application of Gauss’s diver-
gence theorem yieldZ

C
U ijtjdC�

Z
C

T ijlujdCþ
Z

X
C0

rsjlU ir;sllujdX

þ
Z

X
C0

rsjlU ir;sl;lujdX ¼ 0; ð7Þ

where

T ij ¼ Rijlnl; ð8Þ

Rijl ¼ C0
rsjlU ir;s ¼

2m
1� 2m

U ik;kdjl þ Uij;l þ U il;j: ð9Þ

For the weight function U ijðx; yÞ, we choose the displace-
ment fundamental solutions for homogeneous, isotropic
and linear elastic solids, which satisfy the following partial
differential equations

C0
rsjlU ir;sl ¼ �dijdðx� yÞ; ð10Þ

where dðx� yÞ is the Dirac delta function. The solution
Uijðx; yÞ of Eq. (10) is given by the Kelvin’s displacement
fundamental solutions for homogeneous, isotropic and lin-
ear elastic solids with l ¼ 1, which can be written as [36]

Uij ¼ �
1

8pð1� mÞ ½ð3� 4mÞdij lnðrÞ � r;ir;j�; ð11Þ

where r ¼ jx� yj. Substitution of Eq. (10) into Eq. (7) and
application of the sifting property of the Dirac delta func-
tion lead to

~uiðyÞ ¼
Z

C
U ijðx; yÞtjðxÞdC�

Z
C

T ijðx; yÞ~ujðxÞdC

þ
Z

X
V ijðx; yÞ~ujðxÞdX; ð12Þ
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