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a b s t r a c t

Fiber-reinforced composites are usually designed using constant fiber orientation in each ply. In certain
cases, however, a varying fiber angle might be favorable for structural performance. This possibility can
be fully utilized using tow placement technology. Because of the fiber angle variation, tow-placed courses
may overlap and ply thickness will build-up on the surface. This thickness buildup affects manufacturing
time, structural response, and surface quality of the finished product.

This paper will present a method for designing composite plies with varying fiber angles with compos-
ite plates or panels. The thickness build-up within a ply is predicted as function of ply angle variation
using a streamline analogy. It is found that the thickness build-up is not unique and depends on the cho-
sen start locations of fiber courses. Optimal fiber courses are formulated in terms of minimizing the max-
imum ply thickness, maximizing surface smoothness or combining these objectives with and without
periodic boundary conditions.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In industry fiber-reinforced composites are usually designed
using a constant fiber orientation in each ply. The fiber angles in
these laminates are typically 0�, 90�, and ±45�. Traditionally the
choice of these lay-ups was motivated by manufacturability, while
nowadays lay-ups with changing or even non-conventional fiber
angles are avoided because of the lack of allowables. However, re-
search on composites with a varying in-plane fiber orientation has
shown that variable stiffness can be beneficial for structural perfor-
mance [1–17], because variable-stiffness laminates are able to
redistribute the loading more efficiently than constant-stiffness
laminates. In most cases curvilinear fiber paths manufactured by
tow placement are used to construct the variable-stiffness lami-
nates [4,5,9–11,15,18–20]. Jegley, Tatting and Gürdal [9–11] de-
signed variable-stiffness flat plates with holes and demonstrated
their effectiveness by building and testing several specimens.

Due to fiber angle variation, a tow-placed shell typically exhib-
its gaps and/or overlaps between adjacent courses and ply thick-
ness will change along the surface [9–11,18]. The amount of gap/
overlap affects structural response, manufacturing time, and sur-
face quality of the finished product.

This paper presents a method for designing composite plies
which have spatially varying fiber angles. Since fiber-reinforced
laminates usually consist of multiple plies, optimizations for spe-

cific loading conditions result in multiple plies with different fiber
angle distributions. The fiber angle distribution per ply can be used
as a direct input for the optimization, as is done by most research-
ers so far [1–20], or it can be obtained in a post processing step,
where an optimum laminate stiffness distribution is approximated
as closely as possible, as described by Setoodeh et al. [21]. In these
optimizations the ply thickness is usually assumed to be constant,
without taking into consideration manufacturing issues. In the cur-
rent paper the fiber angle distribution per ply is assumed given,
being one of the plies within an optimized laminate. The thickness
build-up is predicted as function of ply angle variation using a
streamline analogy. It is found that the thickness build-up is not
unique and depends on the chosen start locations of fiber courses.
Optimal distributions of fiber courses are formulated in terms of
minimizing the maximum ply thickness or maximizing surface
smoothness, either with or without periodic boundary conditions.
Subsequently the discrete thickness build-up resulting from the
tow-placement process can be determined based on the streamline
distribution. Results will be compared to the smeared thickness
approximation. An overview of the analysis sequence is given in
Fig. 1. Finally, a number of applications for the developed methods
and suggestions for future research are given.

2. Streamline analogy

For the construction of discrete fiber paths a streamline analogy
is being used. For this application each streamline represents the
centerline of a course, or if the course width is made infinitely
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small each streamline will represent a single fiber. Mathematically
a streamline is represented by a stream function

Wðx; yÞ ¼ C ð1Þ

which connects all the points with a constant value C. For a given
fiber angle distribution hðx; yÞ, the streamlines can be found by solv-
ing the following partial differential equation:

dW
ds
¼ @W
@x

dx
ds
þ @W
@y

dy
ds
¼ W;x cos hþW;y sin h ¼ 0 ð2Þ

A unique solution for the stream function (and thus the location
of the stream lines) depends on the boundary conditions. Before
seeking a solution to the stream function, additional considerations
relevant to the physical representation of the fiber paths are in
order.

As stated earlier, the streamlines represent the central path of a
finite width course. Unless the streamlines are parallel, the succes-
sive courses will always overlap each other when no gaps are al-
lowed between them (or alternatively, the gaps will form
between the passes if two successive finite width passes are not al-
lowed to overlap). The amount of overlap depends on the distance
between the course centerlines. If the distance is decreased, then
the overlap area is increased. Although in reality these overlaps
are discrete, a first approximation to the amount of overlap could
be made by smearing out this discrete overlap to form a continu-
ous thickness distribution. In this case, the smeared thickness, t,
will be inversely proportional to the distance between adjacent
courses, which can be explained as follows. If a number of N
courses with a given width, w, and thickness has a fixed volume
V, and if these successive courses are placed closer than the width

of the courses, then the total width covered is less then N �w, and
the thickness has to be increased in order to maintain the same
material volume V.

When the distance between two streamlines is jdnj, then
t / 1=jdnj (as explained above). Since W;n ¼ dW=dn and dW be-
tween two streamlines is constant according to Eq. (1) the thick-
ness t will be proportional to W;n as follows:

t / 1
jdnj ¼

1
dW=W;n

¼ W;n

dW
/ W;n ð3Þ

If dW is assumed to be a unity, then t ¼ W;n, which can be used
to derive a direct correlation between the thickness distribution
and the fiber angle variation (see Appendix A):

��srðln tÞ ¼ �nrh ð4Þ

in which �s and �n represent the tangent and normal vectors to a
streamline, respectively, as shown in Fig. 2. The physical explana-
tion of Eq. (4) is that the change in thickness along a streamline de-
pends on the change of the fiber orientation perpendicular to that
streamline. Since both vectors �s and �n depend on the given fiber an-
gle distribution hðx; yÞ, the only unknown in Eq. (4) is the thickness.
Hence, the thickness can now be determined by solving this equa-
tion, but since it is a differential equation boundary conditions are
needed in order to obtain a unique solution. In accordance with
streamline theory, boundary conditions are only needed at the in-
flow boundary, where the inflow boundary is arbitrarily defined by:

�s � N 6 0 ð5Þ

where �s is the vector tangent to the streamline and N is the outward
normal vector to the boundary, as shown in Fig. 2. By changing the
thickness at the inflow boundary, the thickness distribution inside
the domain and at the outflow boundaries will change.

3. Determining boundary conditions

There exist an infinite number of possible boundary conditions
for which the thickness distribution associated with the stream-
lines can be found, but the most difficult part is to find the ones
that are physically sensible for the problem in hand. In this paper
the boundary conditions are established such that they fulfill a cer-
tain optimality condition. The optimality conditions to be demon-
strated in this paper are minimization of maximum thickness,
maximization of smoothness, and a combination of these two. In
addition, constraints such as periodicity of the boundary condi-
tions can be enforced as well.

3.1. General solution

By using the following change of variables: s ¼ ln t, Eq. (4)
becomes:

��srs ¼ �nrh ð6Þ

Fiber angle distribution
θ (x,y)

Optimization for
smoothness / maximum thickness

Thickness distribution
t (x,y)

Determine
corresponding streamlines

Streamfunction
Ψ (x,y)

Determine increment
for plotting streamlines

Discrete thickness distribution
td (x,y)

Fig. 1. Analysis sequence.
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Fig. 2. Streamline definitions.
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