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a b s t r a c t

A stochastic model of fragmentation of brittle constituents, which has been pioneered for ceramic matrix
composites, is revisited. It consists in a stochastic description of the brittle fracture of successive frag-
ments having a decreasing size. Fracture of a fragment is caused by its most severe flaw. The approach
is based on the low extremes of fragment flaw strength distributions.

The paper is aimed at assessing the approach and its potential application to various composite sys-
tems containing brittle constituents, such as polymer matrix composites or multi-layers. Expressions
for fragments and fibers failures involve various random variables. The influence of the random variables
on tensile stress–strain behaviour predictions was investigated. Fragment strength–size relationships
were established using tensile tests performed on C/SiC minicomposites in the chamber of a scanning
electron microscopy (SEM). Experimental data and predictions validated the approach. Important impli-
cations for the prediction of multiple cracking and resulting stress–strain behaviour are discussed. Then
simple analytical expressions were derived.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The future for structural materials is in hybrid systems made of
small size elements. Introducing small volumes of materials im-
plies reducing the size of processing flaws, which makes the
mechanical strength of constituents to increase tremendously, as
well as the performance of the system. Current examples of such
hybrid systems include fiber reinforced composites (FRC) and mul-
ti-layers. In FRC, the fractions of fibers and matrix are comparable
(around 50% each), fibers have small diameters (7–16 lm in cera-
mic or carbon matrix composites), whereas the matrix is also a few
microns thick. Constituents display contrasting properties, such as
stiff fibers against compliant matrices (polymer matrix reinforced
with ceramic or carbon fibers: PMCs) or strong fibers against weak
matrices (ceramics reinforced with ceramic or carbon fibers:
CMCs). In PMCs, fibers fail first whereas the opposite is observed
in CMCs. Both systems are sensitive to multiple cracking when
the applied load is increased (Figs. 1 and 2). The loads are trans-
ferred through the surviving constituent. This phenomenon may
be observed in multi-layers also.

Thus, modelling properly multiple cracking is of primary impor-
tance to calculate the associated non-linear deformations, with a
view to component or material design. There have been several at-
tempts in the literature aimed at simulating fiber or matrix frag-
mentation. The approaches were based either on a unique

distribution of strengths for the entire volume of constituent which
experiences cracking [1–9], or on flaw density functions pertaining
to fragments [10–16].

In the former, the Weibull equation [1–6] or alternative forms
[7–8] were employed. This implies that the low extreme of the flaw
density function is considered only, although the biggest flaws are
not the only fracture inducing ones as fragmentation proceeds un-
der increasing load. Experimental results obtained during fiber
fragmentation tests showed that this approach may provide satis-
factory predictions only for low stresses, far from the saturation of
fragmentation [7–9,12]. This result is logically expected since the
low strength extreme is considered. This distribution may be
accepted for the first cracks from the most severe flaws.

Despite these limitations, many researchers rely on this ap-
proach to construct a Monte Carlo simulation of fragmentation.
They proceed as follows:

– the volume V of fragmenting constituent (fiber or fiber coat-
ing (matrix)) is divided into a large number of identical ele-
ments with volume Ve,

– the strength of volume V is assumed to follow the Weibull
model.

P ¼ 1� exp � V
V0

r
r0

� �m� �
ð1Þ

where m and r0 are the shape and scale parameters. As men-
tioned above, this equation refers to the low extreme of the
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flaw strength distribution. It does not represent the entire
population of fragment inducing flaws.

– the strength of each element of volume Ve is derived from
(1), by generating a random value which is substituted for P,

– given the applied net stress on the fiber, broken elements are
searched for.

Thus, it appears that the series of cracking stresses is given by
Eq. (1), applied to identical volume elements Ve It corresponds to
a reduced population of fracture inducing flaws.

In the second approach, the phenomenon of fragment genera-
tion is addressed. It is considered that each fragment results from
the failure of a parent fragment. The fracture inducing flaw corre-
sponds to the low extreme of the flaw density function pertaining
to the parent fragment [13–16]. This approach allowed sound pre-
dictions of the tensile stress–strain behaviour of SiC/SiC or C/SiC
minicomposites (i.e. SiC matrix composites reinforced by single

tows of SiC or C fibers) [14,16,17]. Fig. 3 shows an example of
agreement of prediction with experimental behaviour. It is worth
pointing out that this is not model identification but, instead, val-
idation, since the characteristics of constituents were determined
independently. But, the approach is based on the above assump-
tions plus a simplifying one:

– statistical distribution of fragment strengths is still pertinent
as they become smaller and smaller until saturation, which
implies that they contain a sufficient amount of flaws,

– failure of fragments is caused by the weakest flaws,
– average strengths of fragments were used, although strength

is a random variable.

The paper discusses this latter approach of multiple cracking. It
was validated using (i) predictions of stress–strain behaviour for
microcomposites (i.e. composites reinforced by single fibers) for
various sets of random variables including the most general case,
and (ii) experimental strength–fragment size relations derived
from tensile tests performed under SEM microscopy on C/SiC mini-
composites. Then, simple analytical expressions were derived.

2. Model

2.1. General equations of multiple cracking

Brittle failure of the weakest constituent is described by the fol-
lowing failure probability equation [18–20]:

P ¼ 1� exp�
Z

V
dV
Z S

0
gðSÞdS

� �
ð2Þ

where g(S) is the flaw density function and S is the elemental flaw
strength.

It is demonstrated that Eq. (1) reduces to the following equa-
tion, when the low strength extreme of g(S) is considered only,
and when it is described using a power law [18–20] with constants
m and k0:

P ¼ 1� exp � V
V0

K
rref

k0

� �m� �
ð3Þ

where k0 is a scale factor, m is a shape parameter. K is obtained by
integrating the stress-state over the volume V. K depends on the
probabilistic model which is considered [18–20]. rref is a reference
stress (peak stress) in V. V0 is the reference volume (V0 = 1 m3 when
International Units are used).

When the weakest constituent experiences multiple cracking,
Eq. (2) applies to brittle failure of fragments. The flaw density
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Fig. 3. Example of stress–strain curves predicted using the model for PMi = 0.5; and
obtained experimentally (C/SiC minicomposite) [16].
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Fig. 1. Schematic diagrams showing examples of multiple cracking in various
composite systems: (a) fiber fragmentation in a polymer matrix composite, (b)
matrix fragmentation in a ceramic matrix composite, (c) in a cross ply laminate, (d)
fragmentation of transverse tows in a woven composite.

Fig. 2. SEM micrograph showing multiple cracks in the matrix of longitudinal tows,
and of transverse tows of a woven ceramic matrix composite. Note that the cracks
propagated through the tows.
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