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a b s t r a c t

In this paper, the dynamic interaction between multiple inclusions and cracks is studied by the time-
domain boundary element method (TDBEM). To deal with this problem, two kinds of time-domain
boundary integral equations together with the sub-region technique are applied. The cracked solid is
divided into homogeneous and isotropic sub-regions bounded by the interfaces between the inclusions
and the matrix. The non-hypersingular traction boundary integral equations are applied on the crack-sur-
faces; while the traditional displacement boundary integral equations are used on the interfaces and the
exterior boundaries. In the numerical solution procedure, square-root shape functions are adopted for the
crack-opening-displacements to describe the proper asymptotic behavior in the vicinity of the crack-tips.
Numerical results for dynamic stress intensity factors are presented for various cases. The effects of the
inclusion position, material combinations and multiple micro-cracks on the dynamic stress intensity fac-
tors are discussed.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

To improve material performances, a widely used and practical
way is introducing strengthening material phases into a matrix to
form a multi-phase inhomogeneous material, such as fiber-rein-
forced materials or particle-reinforced materials. Understanding
the fracture behavior of this kind of composite materials is vitally
important to develop high performance composites for technolog-
ical applications. The interaction between pre-existing flaws or
cracks and inclusions will bring a significant effect on material
properties which led to a great deal of analytical, numerical and
experimental explorations in this area. A detailed review about
the previous works can be referred to Kitey et al. [1].

Early attempts using analytical approaches were made by Ta-
mate [2], Atkinson [3], Sendeckyj [4] and Erdogan et al. [5,6] for
various cases of a crack inside, outside, penetrating or lying on
the interface. Following these works, more complicated cases such
as concerning more cracks or elliptical inclusions were treated ana-
lytically [7–12]. Due to the complexity of the interaction between
cracks and inclusions, the analytical solutions were obtained only
for limited cases. More general situations were performed by
numerical approaches such as finite element method (FEM) [13–
17] and boundary element method (BEM) [18–20]. Most existing
research works are devoted to static loading conditions. Recently,

the dynamic interaction between an inclusion and a nearby mov-
ing crack was investigated by a BEM ([22]). In that paper, special
attention was paid to the crack trajectory under dynamic loading.
But till now, to our knowledge, no detailed investigations on the
dynamic interaction between multiple cracks and inclusions have
been done.

The aim of this paper is to further extend the time-domain BEM,
which has been successfully developed for the dynamic interaction
between a crack and an interface by Lei et al. [21], to more general
cases including a cluster of cracks and inclusions. Combining the
traditional time-domain displacement integral equations (BIEs)
for the external boundaries and the interfaces, and the non-hyper-
singular traction BIEs ([23]) for crack-surfaces in conjunction with
the sub-region technique, the more complicated case of a bounded
domain with multiple cracks and inclusions under dynamic load-
ing can be well treated. Numerical results for the dynamic stress
intensity factors are presented to demonstrate the dynamic inter-
action effects on the crack-tip field for various locations and mate-
rial combinations.

2. Problem statement and time-domain BIEs

Consider a two-dimensional (2D) elastic solid containing p
cracks and q inclusions as shown in Fig. 1. The deformation of
the cracked solid is either in a state of plane strain or plane stress.
All constituent materials are assumed to be homogeneous, isotro-
pic and linearly elastic. The matrix is surrounded by the external
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boundary CM ¼ Cr
M þ Cu

M, the boundary of the inclusions Ci
In

(i = 1,2, . . . ,q) and the crack-faces Ci
C (i = 1,2, . . . ,p). Here Cr

M and
Cu

M denote the parts with prescribed traction �t and prescribed dis-
placement �u, respectively.

The material parameters are given as follows: shear modulus li,
Lamé constants ki, Poisson’s ratio mi, mass density qi, shear wave
velocity Cj

T and longitudinal wave velocity Cj
L, respectively. The

superscript i = 0 represents the matrix and i = 1,2, . . . ,q represents
ith inclusion.

In the absence of body forces, the cracked solid satisfies the
equations of motion

ri
ab;b ¼ qi€ui

a ð1Þ

and the Hooke’s law

ri
ab ¼ Ci

abcdui
c;d: ð2Þ

The initial conditions can be written as

ui
aðx;0Þ ¼ _ui

aðx; 0Þ ¼ 0 ð3Þ

and the boundary conditions are

taðx; tÞ ¼ �taðx; tÞ; x 2 Ct
M; ð4Þ

uaðx; tÞ ¼ �uaðx; tÞ; x 2 Cu
M; ð5Þ

for external boundary and

taðx; tÞ ¼ rabðx; tÞnb ¼ �ti
aðx; tÞ; x 2 Ci

C; ði ¼ 1; 2; . . . ; pÞ; ð6Þ

for the crack-faces on which a general load �ti
aðx; tÞ is applied.

The continuity conditions on the interfaces are

t0
aðx; tÞ ¼ �ti

aðx; tÞ; u0
aðx; tÞ ¼ ui

aðx; tÞ; x 2 Ci
In;

ði ¼ 1; 2; . . . ; qÞ; ð7Þ

where ri
ab, ui

a and ti
a denote the stress, the displacement and the

traction components, Ci
abcd is the fourth order elasticity tensor, a

comma after a quantity designates spatial derivatives, while the
superscript dots stand for temporal derivatives. Unless otherwise
stated, the conventional summation rule over double indices is ap-
plied with Greek indices a,b,c,d = 1,2 for the present 2D problem.

The non-hypersingular time-domain traction BEM presented by
Zhang and Gross [23] and the traditional time-domain displace-
ment BEM in conjunction with the sub-region technique are
adopted to treat this problem. To apply the time-domain BIEs for
a homogeneous, isotropic and linearly elastic domain, the multi-
phase system is split from the inclusion interfaces into q + 1 sepa-
rated homogeneous sub-domains including one main sub-domain
X0 occupied by the matrix with p cracks and q holes and the
remaining q sub-domains Xi (i = 1, ... ,q) occupied by the individual
inclusions. With C0 ¼ CM þ

Pq
i¼1C

i
In we have @X0 ¼ C0 þ

Pp
i¼1C

i
C.

For the domain X0 containing cracks, the hybrid BEM combin-
ing the displacement BEM with the traction BEM is a feasible

method to deal with this problem. The following non-hypersingu-
lar time-domain traction BIEs:

tCi
C

a ðx;tÞ¼C0
actdncðxÞ

Z
C0

ederG0
betðx;y;tÞ �

@u0
b

@s
ðy;tÞþq0uG0

bt ðx;y;tÞ� €u0
bðy;tÞndðyÞ

( )
dsðyÞ

�ncðxÞ
Z

C0
rG0

acbðx;y;tÞ� t0
bðy;tÞdsðyÞ

�C0
acmdncðxÞ

Xp

i¼1

Z
Ci

C

eedrG0
betðx;y;tÞ

n
�
@Dui

b

@s
ðy;tÞþq0uG0

bt ðx;y;tÞ�D€ui
bðy;tÞndðyÞ

o
dsðyÞ

ð8Þ

are separately applied to each crack-surface Ci
C , and the traditional

displacement BIEs

cabðxÞu0
bðx; tÞ¼

Z
C0
fuG0

baðx;y;tÞ � t0
bðy;tÞ�ncðyÞrG0

bcaðx;y;tÞ �u0
bðy; tÞgdsðyÞ

þ
Xp

i¼1

Z
Ci

C

n2
cðyÞrG0

bcaðx;y;tÞ�Dui
bðy;tÞdsðyÞ

ð9Þ

are applied to C0.
For the remaining q sub-domains or inclusions, each domain or

inclusion is a single-phase material. So the traditional displace-
ment BIEs

cabðxÞui
bðx; tÞ ¼

Z
Ci

In

fuGi
baðx; y; tÞ � ti

bðy; tÞ � ncðyÞrGi
bcaðx; y; tÞ

� ui
bðy; tÞgdsðyÞ ð10Þ

can be separately applied to the boundary Ci
In of each sub-domain.

In Eqs. (8)–(10), x = (x1,x2) and y = (y1,y2) represent the source
and the observation points, rGi

bca and uGi
ba are the 2D elastodynamic

fundamental solutions for stresses and displacements, and an
asterisk � denotes Riemann convolution which is defined by

gðx; tÞ�hðx; tÞ ¼
Z t

0
gðx; t � sÞhðx; sÞds: ð11Þ

The term ci
abðxÞ is a constant matrix which depends on the

smoothness of the boundary and reduces to 0.5dab for a smooth
boundary, where dab is the Kronecker delta. Furthermore, Du-
b(y, t) denotes the crack-opening-displacements (CODs) defined
by Dubðy; sÞ ¼ ubðy 2 CþC ; sÞ � ubðy 2 C�C ; sÞ. All integrals are
understood in the sense of Cauchy principal values. The tensor
eed in Eq. (8) is the 2D permutation tensor. The relations be-
tween the unit normal vectors and the unit tangential vectors
are given by

nj
a ¼ ebasj

b ) nj
a@b � nj

b@a ¼ eba
@

@s
; j ¼ 1; 2 ð12Þ

on the crack-faces, and by

nj
a ¼ eabsj

b ) nj
a@b � nj

b@a ¼ eab
@

@s
; j ¼ 1; 2 ð13Þ

on other boundaries.

3. Numerical solution procedure

To solve Eqs. (8)–(10) numerically, discretizations in both time
and space with proper interpolation functions are required.

3.1. Discretization in time and space

The time interval of interest [0, t] is divided into m equal steps of
the span Dt, while a collocation method is used for the spatial dis-
cretization by using constant elements. Straight boundary ele-
ments of constant length are chosen to discretize the crack-facesPp

i¼1C
i
C, while straight boundary elements of variable length are

used for the boundary C0.
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Fig. 1. A solid with a cluster of cracks and inclusions under dynamic loading.
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