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a b s t r a c t

It is the objective of this work to verify the validity of different approximations in the analysis of geomet-
rically non-linear vibrations of open, cylindrical, laminated, fully clamped shells. Namely, it is intended to
verify if membrane inertia and transverse shear deformation can be neglected and when. p-version finite
elements with hierarchic basis functions are employed to define the models. A simple comparison of the
different stiffness and mass terms is carried out first, to assess the relative importance of membrane iner-
tia and shear deformation. Then a few numerical tests are carried out in non-linear vibrations by solving
the ordinary differential equations of motion by Newmark’s method. It is found that what are usually
considered to be thin panels actually require the consideration of shear deformation.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Laminated composite shells provide stiff, aerodynamically effi-
cient surfaces, have good corrosion and fatigue properties, and give
weight reduction in comparison to metal based structures. Thus,
laminated shells encounter a wide number of applications and in
some of these, e.g. in aeronautic structures, they may experience
large amplitude vibrations. This work is on forced, geometrically
non-linear vibrations of cylindrical, laminated, open panels and
has the purpose of verifying if approximations that are frequently
adopted are valid. The specific interest is in:

(1) comparing thin shell theory, that neglects shear strains, with
first-order shear deformation theory (FSDT). There are a num-
ber of ‘‘rules of the thumb”, namely the 1/20 relation between
length and thickness, that are employed by engineers to
choose between thin or FSD shell theories, but a validation
of these rules is absent in non-linear vibrations;

(2) analysing the influence of the membrane inertia in the non-
linear dynamics of laminated shallow shells. In fact, although
it is very popular to neglect membrane inertia, it is not certain
that this approximation is reasonable in shells vibrating with
large amplitude displacements.

A literature review focused on the above aspects is carried out
in Section 2. In Section 3 the models are presented. A simple com-

parative analysis is executed in Section 4 using a model with one
degree of freedom per displacement component. Multi-degree-of-
freedom models are employed in Section 5, where numerical tests
are performed to compare the different models and discuss their
validity. The numerical tests will employ a p-version finite element
[1] with hierarchic basis functions, which was first used in [2].
Newmark’s method [3] will be used to solve the differential equa-
tions of motion in the time domain. The thickness and the curva-
ture radius will be changed in order to analyse how shear
deformation and membrane inertia affect the shells.

2. Literature review

Several theories exist for the analyses of laminated shells. For
introductions to these theories and general reviews on shell vibra-
tions, review papers [4–7] and books [8–12] may be consulted. A
literature review focused on studies that addressed the importance
of shear deformation and membrane inertia is carried out in the
next sub-sections. We are in particular interested in open, cylindri-
cal, composite laminated, shallow shells, but will include some
works on plates in this review.

In a shallow shell (Fig. 1) the raise is small in comparison with
the spans, being generally accepted that the smallest radius of cur-
vature should be lower than twice the projected length b, or more
restrictively, b/R 6 0.4 according to [13]. When the shell is shallow,
Cartesian coordinates can be used and the strain displacement
relations slightly differ from the ones of plates [10]. The analysis
of this paper is restricted to cylindrical open shells, and the geom-
etry of a shell prior to deformation is defined from a reference
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plane by an initial ‘‘displacement” w1 in the z direction written as
w1(x,y) = �y2/(2R) where R is the principal curvature radius.

2.1. Effect of membrane inertia

This review starts with works on linear vibrations and in particu-
lar with the paper by Leissa and Kadi [13], where the effect of mem-
brane inertia on the linear natural frequencies of a rather thin
isotropic shallow shell was analysed. Neglecting the membrane
inertia caused small errors – below 1%. In [14] boundary-domain ele-
ment methods were applied. The effects of neglecting the membrane
and the rotary inertias on the linear natural frequencies of lower
modes of thick, very shallow shells (h/a = 0.1, a/R 6 0.1) were small.

A number of studies on non-linear vibrations followed a single-
mode approach or severely reduce models. Abe et al. [15] examined
the non-linear free vibrations of laminated shallow shells with
clamped edges, considering one or two degrees of freedom. The same
authors [16] analysed the response of simply supported, symmetric
laminated shallow shells using a model with three degrees of free-
dom. Both in [15] and [16] the membrane and rotary inertias were
neglected. After a literature search, Przekop et al [17] concluded that
the membrane inertia has been generally neglected in the analyses
of large-amplitude free vibration of shallow shells or that, when it
was considered, it was in conjunction with simple one degree of free-
dom models. One exception occurs in [18] where a multi-degree-of-
freedom model was applied following FSDT and apparently the
membrane inertia was considered; however the oscillations were
assumed to be harmonic, which is an important restriction. Przekop
et al [17] applied two types of modal reduction to investigate
free vibrations of isotropic shells: one formulation does not neglect
membrane inertia and the other uses bending modes only and
neglects the membrane inertia. It was concluded that the two modal
formulations can predict completely different characteristics. In
[19], the effect of membrane inertia on large amplitude vibrations
of a complete circular cylindrical isotropic shell was investigated
and it was shown that membrane inertia should be included to
have an accurate model in that case. In [20], it is considered that in
shallow open panels the effect of membrane inertia should be less
important than for complete circular shells, but the membrane
inertia is employed in the analysis of isotropic shells. The rotary
inertia and transverse shear strains were neglected in [19,20].

It is concluded from an overview of the literature, that most
authors accept that the membrane inertia can be neglected in the
analyses of large amplitude vibrations of open shallow shells, but ref-
erence [17] indicates that this may not be always true.

2.2. Shear deformation

The first-order shear deformation theory (FSDT) [10] has some
advantages in comparison with the classical laminate thin shell

theory. First of all, since the transverse shear deformation and
the rotary inertia are not neglected more accurate results are gen-
erally achieved using FSDT. This becomes more significant in com-
posite laminates, because their shear moduli are generally smaller
than the shear modulus of isotropic materials. Second, FSDT finite
elements only require C0 continuity whilst the thin shell ones re-
quire C1 continuity.

In the FSDT, the displacement components in the x, y and z
directions, respectively represented by u, t and w are given by

uðx; y; z; tÞ ¼ u0ðx; y; tÞ þ zh0
yðx; y; tÞ; vðx; y; z; tÞ

¼ v0ðx; y; tÞ � zh0
x ðx; y; tÞ; wðx; y; z; tÞ ¼ w0ðx; y; tÞ ð1Þ

where u0, t0 and w0 are the values of u, t and w at the reference sur-
face, and h0

x and h0
y are the independent rotations of the normal to

the middle surface about the x and y axis.
Thin shell theories follow assumptions often attributed to Love,

which can be found, for example in p. 6 of Ref. [9]. Due to its rele-
vance to this work, we recall the following assumption, known as
Kirchhoff’s hypothesis: ‘‘normals to the undeformed middle sur-
face remain straight and normal to the deformed middle surface
and suffer no extension”. Transverse shear is hence neglected,
and h0

yðx; y; tÞ ¼ �w0
;xðx; y; tÞ and h0

x ðx; y; tÞ ¼ w0
yðx; y; tÞ. Naturally,

the thinner the panel the more accurate Kirchhoff’s hypothesis is.
The effect of shear deformation depends upon the dimensions,
lamination and boundary conditions [8].

In his book [8], Chia states that ‘‘the transverse shear effect on
deflection, buckling load, and fundamental frequency of composite
plates is generally significant at the span-to-thickness ratio of 2000.
In the same book it is stated that a span-to-thickness relation
approximately equal to 25 requires using theories of higher order
than the thin one. In [21], Berger hypothesis and a one mode
approximation were adopted to analyse the large-amplitude vibra-
tion of rectangular plates with span-to-thickness relation equal to
10 and 20. Shear deformation and rotary inertia played a consider-
able role in the large-amplitude vibration of orthotropic plates,
causing an increase in the period. The effect of thickness upon the
large amplitude vibrations of isotropic shallow shells was also
investigated in [22], where membrane and rotary inertia were ne-
glected arriving at a one degree of freedom model. It was found that
thin shell theory underestimates the hardening spring effect for
thick shells. In [23], a third-order expansion in the thickness coor-
dinate for the in-plane displacements was assumed to compute
the linear natural frequencies of laminated plates. The authors con-
clude that thin plate theory is accurate for plates where a/h P 40, if
an average error of 5.5% is acceptable. FSDT theory provided the
10th natural frequency of plates, where a/h = 5 with a difference
of about 3% in relation to higher order theories; smaller differences
occurred in the lower modes. A higher order theory is again used in
[24]; the FSDT gives fundamental frequencies that are quite close to
the ones computed with higher order theories and with the theory
of elasticity in plates until, at least a/h = 5. Thin plate theory only
provided reasonably accurate fundamental frequencies for a/h
above 25 (error over 5%, when a/h = 25). In a work carried out on
isotropic beams and plates [25], it was found that FSDT and thin
theory may predict differently the stability of the solutions. In
Ref. [26], linear natural frequencies are computed using both thin
and FSDT models. In a fully clamped rectangular plate, where a/
h = 50, the thin theory provides the first natural frequency with
an error approximately equal to 2.4% and the fourth natural fre-
quency with an error slightly larger than 3%. When the span to
thickness ratio is 25, the errors are greater than 9%.

2.3. Shear correction coefficient

When a first order shear deformation theory is followed, shear
correction coefficients, k, are required. There are a few studies
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Fig. 1. Open cylindrical shell.
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