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a b s t r a c t

The flow of non-Newtonian liquid polymers through fibrous reinforcements is a phenomenon which is
often encountered during polymer composites manufacturing. In a previous work, we have proposed
from a multiscale theoretical approach a method to model this phenomenon when the polymer can be
regarded as a generalised Newtonian fluid [Orgéas et al. J. Non-Newtonian Fluid Mech. 2007; 145]. In this
paper, the capability of the method is tested with power-law fluids flowing through deformed plain
weave fabrics. For that purpose, the flow problem is firstly analysed at the mesoscale from numerical
simulations performed on representative elementary volumes of the fabrics. The influences of both the
current deformation of the fabrics and the fluid rheology on the macroscopic flow law are emphasised.
Secondly, it is shown that the proposed method allows a nice fit of numerical results.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Understanding, gauging and controlling physical phenomena
occurring during the processing of fibre-reinforced polymer com-
posites is crucial to produce optimised structural or functional
components with such materials. Among these phenomena, (i)
the evolution of fibrous microstructures as well as (ii) the flow of
the liquid polymer through the fibrous reinforcements are still
not very well understood and require a deeper analysis.

(i) Whatever the considered fibrous reinforcements, i.e.
impregnated/dry short/long woven/non-woven networks of
fibres/fibre bundles, the evolutions of their microstructures
induced during the various stages of forming strongly affect
their rheology [1–3]. This also significantly changes the pos-
sible flow of the liquid polymers through the fibrous net-
works [4–9].

(ii) The considered polymer matrixes, i.e. polymer blends,
charged polymers or curing polymers, may exhibit complex
rheologies, far from that of the idealised Newtonian fluid
model. When non-Newtonian effects become pronounced,
significant deviations from the flow of a standard Newtonian
fluid through porous media are observed and cannot be
neglected [10–15]. In such situations, the well-known

Darcy’s law is no longer relevant. Unfortunately, if the liter-
ature dealing with the flow of Newtonian fluid through
fibrous media is abundant, much less is published concern-
ing the flow of non-Newtonian fluids through anisotropic
fibrous media, even in the very simple case where liquid
polymers or polymer suspensions are assumed to behave,
as a first rough but reasonable approximation, as purely
non-linear viscous fluids. Consequently, resulting macro-
scopic models able to describe such macroscale flows are
scarce [13,15–18].

In this work, we propose a method to model the second phe-
nomenon at the macroscale, by investigating the impact of the evo-
lution of the fibrous microstructures, i.e. the first phenomenon, on
the macroscopic flow law. The method is based on a multiscale ap-
proach of which the theoretical background has been published in
a previous work [18]. For that purpose, the flow problem at the fi-
bre scale is first presented (Section 2). Theoretical results obtained
from the upscaling process are briefly recalled (Section 3). A meth-
od to build continuous macroscopic flow laws is presented (Section
4). It is based on mesoscale simulations which are carried out on
representative elementary volumes of fibrous microstructures. Its
capability is here tested with generalised Newtonian fluids, i.e.
power-law fluids, flowing through pre-sheared plain weaves (Sec-
tion 5). In particular, the influences of both the current deforma-
tion of the plain weaves and the fluid rheology on the
macroscopic flow law are emphasized.
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2. Fluid flow problem at the mesoscale

We consider the slow and isothermal flow of an incompress-
ible generalised Newtonian fluid through a rigid fibrous medium,
by assuming a no slip condition at fluid–solid interfaces C. The
fibrous medium, e.g. a textile reinforcement made up of continu-
ous fibre bundles, is seen as an assembly of a large number of
identical cells, called Representative Elementary Volume (REV),
whose typical size lREV is of the same order of magnitude as lc,
the characteristic thickness of sheared fluid at the heterogeneity
scale (here the fibre bundle scale), i.e. lREV ¼ OðlcÞ. lc is supposed
to be very small compared to the size Lc upon which macroscopic
pressure gradients occur. Hence, the scale separation parameter
e = lc/Lc is very small, i.e. e� 1. Within the REV of volume XREV,
the flowing fluid occupies a volume Xf, whereas fibre bundles
occupy a volume Xs. For the sake of simplicity, the flow within
them is ignored in this study. The stress tensor r of the consid-
ered flowing fluids is:

r ¼ �pdþ s with s ¼ 2gD; ð1Þ

where p is the incompressibility pressure, d the identity tensor and
where the extra stress s depends on both the shear viscosity g and
the strain rate tensor D ¼ ð$� v þ v � $Þ=2, v being the local fluid
velocity field. The shear viscosity g is assumed to be a function of
the microscopic equivalent shear strain rate _ceq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D : D
p

, i.e.
gð _ceqÞ. Many well-known rheological models belong to this fluid
category: Newtonian fluids, power-law fluids, Cross fluids, Car-
reau–Yasuda fluids, regularised versions of Bingham or Herschel–
Bulkley fluids... From the very simple Newtonian approximation,
the other cited models constitute a first step to better account for
the complex and non-Newtonian rheology of liquid polymers or
polymer suspensions during the processing of polymer composites:
they can capture the non-linear influence of strain rates on stress
levels required to induce the flow of these complex fluids at finite
strain or in steady state situations. Let us note that s can also be de-
fined as the gradient of a volumetric viscous dissipation potential
U:

s ¼ @U
@D
¼ @U
@ _ceq

@ _ceq

@D
¼ seq

@ _ceq

@D
¼ 2gD; ð2Þ

where the equivalent shear stress seq is defined as:

seq ¼
@U
@ _ceq

¼ g _ceq; ð3Þ

so that the volumetric mechanical local dissipation Pdis is expressed
as:

Pdis ¼ s : D ¼ seq _ceq: ð4Þ

This study is restricted to fluids which verify dseq=d _ceq > 0. This
assumption endows the so-defined dissipation potential U with
the convexity property. It is required to ensure the solution unicity
of the localisation problem (7) (see Section 3, [18]). For example, in
case of power-law fluids, for which g ¼ g0 _cn�1

eq (g0 being the positive
consistency and n the power-law exponent), the last restriction im-
poses n > 0.

Finally, let us point out that when a homogeneous permeation
experiment performed with a fibrous sample of length Lc is consid-
ered, the present fluid flow problem is driven by a balance between
a macroscopic pressure gradient of characteristic value Dpc/Lc and
viscous drag forces of characteristic value fc = sc/lc, sc being the
characteristic shear stresses induced by the local shearing of the
fluid at a charateristic shear rate vc/lc [18]:

Dpc

Lc
¼ O fcð Þ ¼ O

1
lc
sc

� �
¼ O

1
lc
gc

vc

lc

� �
with gc ¼ g

vc

lc

� �
: ð5Þ

3. Upscaling process: main results

The above local fluid flow problem was theoretically upscaled in
previous studies for Newtonian fluids [19], power-law fluids
[20,21], and more recently for generalised Newtonian fluids [18]
by using the homogenisation method with multiple scale asymp-
totic expansions [22]. We briefly recall here the main results de-
duced from these studies.

3.1. Macroscopic balance equations

The homogenisation process shows that for generalised Newto-
nian fluids, the mass and momentum balance equations of the
macroscopic equivalent continuum associated with the above local
physics are, respectively [18]:

$ � hvi ¼ 0;
$�p ¼ f hvi;g;microstructureð Þ;

�
ð6Þ

where $�p stands for the macroscopic pressure gradient, hvi is the
macroscopic velocity defined as the volume average of the first or-
der component �v of the velocity field v, and f is a macroscopic vol-
umetric viscous drag force depending on hvi, the shear viscosity g
and the fibrous microstructure.

3.2. First order localisation problem

In order to estimate the macroscopic flow law, i.e. the form of f,
the macroscopic velocity field hvi must be determined. hvi can be
obtained by determining the first order periodic velocity field �v
in a given REV, by solving the following localisation problem
resulting from the homogenisation process [18]:

$ � �v ¼ 0 in Xf ;

2$ � g _�ceq
� �

�D
� �

¼ $�pþ $dp in Xf ;

�v ¼ 0 onC;

8><
>: ð7Þ

where the macroscopic pressure gradient $�p acts as a constant and
given volume force in the whole REV, and dp is the first order peri-
odic fluctuations of the pressure field around �p.

3.3. Properties and forms of the macroscopic flow law

When the flowing fluid is Newtonian, i.e. when g = g0, it can be
shown that the macroscopic flow law reduces to the well-known
Darcy’s law [23,19]:

f ¼ �g0K�1 � hvi; ð8Þ

where K is the definite, positive and symmetric permeability ten-
sor. When considering a power-law fluid, the linear Darcy’s law
(8) is not valid any more. However, it can further be proved that
f is a homogeneous function of degree n of the average velocity
hvi [21]:

f nhvið Þ ¼ nnf hvið Þ; 8n 2 Rþ: ð9Þ

For other generalised Newtonian fluids, relations (8) and (9) are
no more satisfied. Nonetheless, it can be shown that the macro-
scopical drag force f is the gradient, with respect to hvi, of the vol-
ume averaged viscous dissipation hUi [18]:

f ¼ � @hUi
@hvi : ð10Þ

As shown by (2), the viscous dissipation potential U can be ex-
pressed at microscopic scale as a function of _ceq. Similarly, the mac-
roscopic dissipation potential hUi can be expressed as a function of
a macroscopic equivalent velocity veq, defined as a norm in the
velocity space and depending on hvi:
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