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This work deals with nonlinear vibrations of a buckled von Karman plate by an asymptotic 
numerical method and harmonic balance approach. The coupled nonlinear static and 
dynamic problems are transformed into a sequence of linear ones solved by a finite-
element method. The static behavior of the plate is first computed. The fundamental 
frequency of nonlinear vibrations of the plate, about any equilibrium state, is obtained. 
To improve the validity range of the power series, Padé approximants are incorporated. 
A continuation technique is used to get the whole solution. To show the effectiveness of 
the proposed methodology, numerical tests are presented.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Vibrations and buckling are common instability phenomena accompanied, generally, by large displacements and im-
portant changes in the shape of structures widely used in various industrial fields such as civil engineering, mechanics, 
aerospace, etc. For appropriate design, it is necessary to develop analytical, numerical or experimental tools able to ana-
lyze these problems in order to predict accurately critical loads and natural frequencies (instability and resonance regions). 
In the literature, various approaches coupling the two problems were developed. A relatively simple one consists, first, in 
computing static equilibrium branches with the corresponding critical loads and, secondly, in analyzing the vibrations of 
the structure about a given equilibrium position of the pre- or post-buckled domain. The majority of the realized works, 
using the indicated approach, concern only linear theory and consider beams, plates or shells structures. These studies 
show, especially, that the first frequencies can define bifurcation indicators that can be employed advantageously in the 
non-destructive control. Furthermore, some papers consider non-conservative loads leading to complex instabilities called 
flutter phenomena. But it is known that, when a shell is deflected more than approximately one-half of its thickness, sig-
nificant geometrical nonlinearities are induced and a variation of the frequency resonance with the vibration amplitude is 
shown [1]. However, to the author’s knowledge, only a few works have shown an interest in the coupling of the buckling 
and vibrations and taken into account these nonlinearities [2–12]. Min and Eisley [2] and Tseng and Dugundji [3] adopted 
analytical procedures based on Galerkin method and modal approximation to study beams subjected to in-plane load. Note 
that, experimental results were presented in the last paper. Using the same procedures with elliptic integrals, Lesatri and 
Hanagul [4] studied beams with elastic end restraints. Employing Kirchhoff plate theory and Harmonic balance method, 
Mahdavi et al. [5] examined the effect of in-plane load on embedded single layer graphene sheet (SLGS) in a polymer 
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Fig. 1. Geometry and coordinate system of a rectangular plate.

matrix aroused by nonlinear Van Der Waals forces. Shojaei et al. [6] proposed a numerical approach based on Galerkin 
procedure and a discretization of the space and time domains to investigate Euler–Bernoulli beams with different boundary 
conditions. Ansari et al. [7] studied microscale Euler–Bernoulli beams employing a couple stress theory. They also consid-
ered post-buckled von Karman nanoplates [8]. Based on a high order shear deformation theory, on a Galerkin method and 
a Newton–Raphson iterative procedure, Girish and Ramachandra [9] investigated laminated composite plates, with initial 
geometric imperfections and subjected to a uniform temperature distribution through the thickness. Li et al. [10] used von 
Karman plate theory, Kantorovich time-averaging method and a shooting method to study circular orthotropic plates with 
a centric rigid mass. Xia and Shen [11,12] considered sandwich plates with functionally graded material FGM face sheets 
and FGM plates with a layer of piezoelectric actuators in thermal environments and subjected to a compression load. The 
used formulation is based on a high-order shear deformation theory and takes into account thermo-piezoelectric effects. 
The motion equations are solved by a perturbation technique.

The aim of the present work consists in studying the nonlinear free vibrations of von Karman plates about a static 
equilibrium of the pre- or post-buckled domain, by an asymptotic numerical method (ANM) combined to a harmonic bal-
ance method. The unknowns of the problem (solution branches, natural frequencies and mode shapes) are determined by 
a perturbation technique whose terms are computed by a finite-element method. The coupled nonlinear problems (static 
and dynamic) are transformed into a sequence of linear ones with only two operators to be inverted. In this approach, one 
searches, first, the equilibrium branches and the bifurcation points. Secondly, the backbone curves, related to the fundamen-
tal frequency of nonlinear free vibration of the structure about any equilibrium position of pre and post buckling domain, 
are determined. At each stage of the proposed algorithm, Padé approximants are incorporated to improve the validity range 
of the power series and to reduce the computational cost. The whole solution branches at large displacements are derived 
by the continuation procedure. To show the effectiveness and the reliability of the proposed methodology, numerical tests 
are presented.

2. Formulation of the problem

The main objective of this paper consists in developing a methodological approach based on the asymptotic numerical 
method and coupling buckling and nonlinear free vibration of thin plates subjected to uniaxial load. Here, one follows ex-
actly the same methodology as that adopted in [13]. After determining the static fundamental branch, the bifurcation point 
and the bifurcated branches, the backbone curve corresponding to the fundamental frequency of the nonlinear vibrations of 
the plate about any equilibrium state of the pre- or post-buckled domain is determined.

2.1. Governing equation of static equilibrium

Let us consider an elastic and homogeneous rectangular plate of thickness h, length L, width l, middle surface Ω , density 
mass ρ , Young modulus E , Poisson’s ratio ν . In a rectangular coordinate reference frame (O ; x, y, z), the displacement 
components of a middle surface point of coordinates (x, y, z) are denoted by u, v , and w in the x, y and z directions, 
respectively. One assumes that the plate is subjected to a uniform axially compressive force F per unit length, in the 
x-direction, along the edges x = 0, L (see Fig. 1).

The governing equation of the nonlinear static behavior can be derived by the von Karman theory. To use easily a 
perturbation technique, a mixed principal is required. The stationarity of the Hellinger–Reissner functional gets [14]:

L
(
Us) + Q

(
Us,Us) − λF = 0 (1)

where Us = {us, vs, ws, Ns}t is a mixed unknown vector, the linear operator L(·) and the quadratic one Q(·, ·) are defined by:

〈
L
(
Us), δU

〉 = ∫
Ω

{
δN : (Γ l(us) − [Cm]−1 : Ns) + δΓ l(δu) : Ns + δκ : [Cb] : κs}dΩ (2)
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