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We extend to the thermoelastic case the study [1] devoted to the dynamic response of 
a structure made of two linearly elastic bodies linked by a thin soft adhesive linearly 
elastic layer. Once again, a formulation in terms of an evolution equation in a Hilbert 
space of possible states with finite energy makes it possible to identify the asymptotic 
behavior, when some geometrical and thermomechanical parameters tend to their natural 
limits, as the response of two bodies linked by a thermomechanical constraint. The genuine 
thermomechanical coupling remains in the constraint law only for a specific relative 
behavior of the parameters.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On étend au cas thermoélastique l’étude [1] consacrée à la réponse dynamique d’un 
assemblage de deux corps linéairement élastiques liés par une couche adhésive linéaire-
ment élastique mince et molle. À nouveau, une formulation en terme d’équations 
d’évolution dans un espace de Hilbert d’états possibles d’énergie finie permet d’identifier le 
comportement asymptotique, lorsque des paramètres géométriques et thermomécaniques 
tendent vers leurs limites naturelles, comme la réponse de l’assemblage des deux corps 
par une liaison thermomécanique. Le couplage thermomécanique initial perdure dans la loi 
de la liaison uniquement pour un comportement relatif particulier des paramètres.
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1. Introduction

Adhesively bonded joints are an attractive way to put together the components of a structure. As in several situations 
thermal effects are not negligible, we extend a previous study [1] devoted to a linearly elastic material to the linearly ther-
moelastic case. Taking advantage of the coupling between mechanical and thermal effects, it is still possible to formulate the 
problem of determining the transient response of a structure made of two linearly thermoelastic bodies perfectly connected 
by a thin soft thermoelastic layer with high thermal resistivity in terms of an evolution equation in a Hilbert space of possi-
ble states (displacement, temperature, velocity) with finite energy. Hence it is possible to adopt the strategy of [1,2] in order 
to, first, obtain existence and uniqueness results and, then, to study the asymptotic behavior when some geometrical and 
thermomechanical data, now regarded as parameters, tend to their natural limits. The limit behavior which supports our 
proposal of a simplified but accurate enough model for the initial physical situation, corresponds to the dynamic response 
to the initial load of two linearly thermoelastic bodies connected by a thermomechanical constraint along the surface the 
adhesive layer shrinks to. The structure of the constitutive equations of the constraint is similar to the one of the layer with 
coefficients depending on the relative behaviors of the parameters but the thermomechanical coupling is maintained only 
for a particular relative behavior.

2. Setting the problem

We consider a structure consisting of two thermoelastic bodies (adherents) bonded by a thin thermoelastic layer (ad-
hesive). The entire system occupies the domain Ω ⊂ R

3 with a Lipschitz-continuous boundary ∂Ω . Let (Γ M
0 , Γ M

1 ) and 
(Γ T

0 , Γ T
1 ) be two partitions of ∂Ω with H2(Γ

T
0 ) > 0 and H2(Γ

M
0 ) > 0, where H2 is the two dimensional Hausdorff 

measure. We denote the orthonormal canonical basis of R3, assimilated to the physical Euclidean space, by {e1, e2, e3}
and for all (x1, x2, x3) in R3, x̂ stands for (x1, x2). The intersection S of Ω with {x3 = 0} is supposed to have a pos-
itive Hausdorff measure and it is also assumed that there exists ε0 > 0 such that Bε0 = {(x̂, x3) ∈ Ω; |x3| < ε0} is 
equal to S × (−ε0, ε0). Let ε < ε0, then the adhesive occupies the layer Bε , while each of the two adherents occupies 
Ω±

ε := {x ∈ Ω; ±x3 > ε} and let Ωε = Ω+
ε ∪ Ω−

ε . Adherents and adhesive are assumed to be perfectly stuck together along 
Sε = S+

ε ∪ S−
ε , S±

ε := {x ∈ Ω; x3 = ±ε}. The structure is clamped on Γ M
0 , maintained at a uniform temperature T0 on Γ T

0 , 
subjected to body forces of density f , to surface forces of density gM on Γ M

1 and to thermal flux gT on Γ T
1 .

The whole structure is modeled as linearly thermoelastic in the following way. Let (ρ, β, α, κ, a) ∈ L∞(Ω; R ×R × S3 ×
S3 × Lin(S3)) satisfying⎧⎪⎨⎪⎩

∃(ρm, βm, κm,am) ∈ (0,+∞)4

ρ(x) ≥ ρm, β(x) ≥ βm, α(x) ≥ 0, κ(x)ξ · ξ ≥ κm|ξ |2, ∀ξ ∈R
3,

a(x)e · e ≥ am|e|2, ∀e ∈ S3, a.e. x ∈ Ω

(1)

where S3 is the space of 3 × 3 symmetric matrices with the usual inner product and norm denoted by · and | · |, as in R
3, 

and Lin(S3) is the space of linear mapping from S3 to S3. The mass density, the specific heat coefficient, the thermal 
dilatation, the heat conductivity and the elasticity coefficients in the adherents are ρ , β , α, κ and a, respectively, while the 
positive numbers ρ̃ , β̃ , α̃, κ̃ , λ and μ denote the mass density, the specific heat coefficient, the thermal dilatation, the heat 
conductivity and the Lamé coefficients in the adhesive assumed to be isotropic and homogeneous. Thus problem (Ph) of 
determining the evolution of the assembly involves the quintuplet h = (ε, λ, μ, κ, γ ) of data where γ = (3λ + 2μ)α̃ and 
thereafter all the fields will be indexed by h. In the following, the upper dot denotes the differentiation with respect to 
time t , e(u) is the linearized strain tensor associated with the displacement field u. Hence problem (Ph) reads as:

(Ph)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρüh = divσh + f , T0βθ̇h = div qh − T0aα · e(u̇h) in Ωε

σh = a
(
e(uh) − θhα

)
, qh = κ∇θh in Ωε

ρ̃üh = divσh + f , T0β̃θ̇h = div qh − T0γ tr e(u̇h) in Bε

σh = λ tr e(uh)Id + 2μe(uh) − γ θh Id, qh = κ̃∇θh in Bε

σhν = gM on Γ M
1 , qh · ν = gT on Γ T

1 , uh = 0 on Γ M
0 , θh = 0 on Γ T

0

uh(x,0) = u0
h(x), u̇h(x,0) = v0

h(x), θh(x,0) = θ0
h (x), a.e. x ∈ Ω

(2)

where uh , θh , σh and qh are the fields of displacement, temperature increment with respect to T0, the stress tensor and the 
heat flux vector, respectively, while u0

h , v0
h(x), θ0

h are the initial conditions. The symbols Id and ν refer to the 3 × 3 identity 
matrix and the outward unitary normal to ∂Ω .

3. Existence and uniqueness result for (Ph)

Assuming that

(H1) : (
f , gM , gT ) ∈ C0,1([0, T ]; L2(Ω;R3)) × C2,1([0, T ]; L2(Γ M

1 ;R3)) × C2,1([0, T ]; L2(Γ T
1

))
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