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We simulate oil slug displacement in a sinusoidal channel in order to validate computa-
tional models and algorithms for multi-component flow. This case fits in the gap between 
fully realistic cases characterized by complicated geometry and academic cases with 
simplistic geometry. Our computational model is based on the lattice Boltzmann method 
and allows for variation of physical parameters such as wettability and viscosity. The effect 
of variation of model parameters is analyzed, in particular via comparison with analytical 
solutions. We discuss the requirements for accurate solution of the oil slug displacement 
problem.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Transport properties of immiscible fluids in porous media have been extensively investigated because of their practical 
and fundamental importance. The challenges here are due to complex multi-component and multi-scale physics, as well as 
complex geometry.

One practically important example of such flows is in petroleum reservoir engineering, where the minimum pressure 
required for removing residual oil is one of the critical rock properties. Due in large part to the limitations of physical 
experiment, engineers and scientists are increasingly considering numerical simulation, which is very difficult as well. In 
addition to the usual challenges of complex flow modeling, pores and voids in the rocks have nontrivial topological and 
geometrical structure. Moreover, the wettability of pore walls that strongly influences the flow through the rock, is hard 
to take into account in the computational model. In a real rock, the wettability is variable and depends on such factors as 
mineral composition, microscopic surface roughness, pore shapes, and the adsorption effects [1].

One of the promising computational approaches for modeling this class of flows is the lattice Boltzmann method (LBM). 
Its first advantage is its framework that is based on the mesoscopic kinetic theory. Compared with Navier–Stokes-based 
formalisms, it describes small scale effects more naturally. For example, interfaces between different components are au-
tomatically determined once the species’ interactions are defined. Detailed modeling of the wall boundaries is also more 
natural [2]. Second, the LBM involves only cubic volume lattices that do not adapt to solid boundaries, so that the volume 
meshing can be made simple and automatic [3–6]. Third, the LBM generally has highly parallel computational performance 
since most of operations are performed locally.
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A number of previous studies that use the LBM for simulation of rock samples and porous media show promising results 
[7–13]. However, when a realistic case is simulated it may be difficult to identify the model features that are responsible for 
deviation of computational results from the experiment and theory. Therefore, it is desirable to have more basic cases that 
fit in the gap between fully featured realistic cases and simple academic benchmark tests. Most of such previously studied 
simple cases include the capillary rising, the Hagen–Poiseuille flow, the Couette flow, and droplet in free space under specific 
conditions [2,14–16]. As stated in these papers, essential issues relevant to realistic cases are not accounted for, such as the 
resolution dependence for complex geometry, transition from steady to unsteady flow regimes, the hysteresis effects, etc.

In this work, we focus on computation of the minimum pressure required for removing residual oil, which is called the 
critical pressure, in a sinusoidal channel using a multi-component LBM approach. This geometry can be viewed as a simple 
prototype of porous media [13]. The existence of analytical solution for the critical pressure in this case [17–19] makes it 
possible to evaluate the accuracy of predicting the transition from the static to moving slug. Furthermore, the effects due to 
resolution, viscosity, and wettability variation upon the quality of numerical results can be evaluated using this prototype 
model of porous media.

This paper is organized as follows. In Section 2, we review the LBM formalism for multi-component flow. In Section 3, we 
report simulation results. The first case is a two-dimensional droplet in free space, which serves to determine the surface 
tension. The second case is the two component Hagen–Poiseuille flow, that is used to test the viscous effect. The third 
case is a two-dimensional slug between flat plates, that is used to define the relation between the contact angle and the 
corresponding control parameter of the model. After the model parameters are chosen based on these results, the critical 
pressure for an oil slug in a sinusoidal channel is investigated. In Section 4, we summarize the main findings and discuss 
some potential extensions of this study.

2. The lattice Boltzmann method for multi-component flow

Since more than twenty years ago, the LBM has been developed in various ways for simulation of immiscible fluid flows 
[20]. The LBM model we developed and applied in this study is originated from the well-known Shan–Chen model [21,22]. 
Combined with other recent LBM advancements [23–27], our model provides accurate and stable results, in particular for 
small viscosity and in arbitrary geometry. The formalism that we use is briefly described below.

The general lattice Boltzmann (LB) equation for multi-component fluid flow, for example that consisting of oil and water, 
is as follows:

f α
i (x + c i�t, t + �t) − f α

i (x, t) = C α
i +Fα

i (1)

where f α
i is the density distribution function of each fluid component, c i is the discrete particle velocity and α is an index 

for the oil or water component, α = {o, w}. The D3Q19 [28] lattice model is adopted here so that the i ranges from 1 to 19. 
The collision term C α

i defines relaxation of particles’ distribution functions towards their equilibrium states. Fα
i is the term 

associated with the inter-component interaction force. The most popular and simple form of the collision operator is the 
BGK operator [28–31] with a single relaxation time,

C α
i = − 1
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i ) (2)

After rearrangement of some terms, the two above equations can be written in the following form,
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Here τmix is the “mixed” relaxation time that is related to the kinematic viscosity of the mixture of components:

τmix = (νmix/T0) + 1

2
(4)

νmix = (
ρoνo + ρwνw)/(ρo + ρw)

(5)

where T0 = 1/3 is the lattice temperature in D3Q19. The function f ′α
i is the nonequilibrium particle distribution for each 

fluid component. It is important that instead of using the standard BGK form f ′α
i = f α

i − f eq,α
i , a regularized collision 

procedure is applied in this work in order to calculate f ′α
i ,

f ′α
i = �α : �α (6)

Here � is a regularization operator that uses Hermite polynomials and �α is the nonequilibrium part of the momentum 
flux. The basic concept of regularized collision procedure can be found in [23–26,32]. f eq

i is the equilibrium distribution 
function with the third order expansion in u,
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