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In the present paper, a method is proposed for topology optimization of continuum 
structures subject to static and plastic admissibility conditions relative to a prescribed load. 
A key feature of the method is that, using a finite-element discretization, the form of the 
resulting topology optimization problem is similar to that of the direct static approach of 
the limit analysis problem. The proposed method is formulated in plane strain using Tresca 
materials and is illustrated on example problems taken from the literature.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans le présent article, une méthode est proposée pour l’optimisation de la topologie des 
milieux continues soumis à des conditions d’admissibilité statique et plastique relativement 
à un chargement imposé. Une propriété essentielle de la méthode est qu’en utilisant une 
discrétisation par éléments finis, la forme du problème d’optimisation de la topologie 
résultant est similaire à celle du problème direct de l’analyse limite formulé selon 
l’approche statique. La méthode proposée est formulée en déformations planes en utilisant 
un matériau de Tresca. Elle est illustrée à travers des exemples de problèmes issus de la 
littérature.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Research in topology optimization of continuum structures has witnessed a considerable development during the last 
decades [1–5]. This development led to near maturity, as demonstrated by the numerous successful applications in industry 
[6] and the emergence of powerful dedicated topology optimization software [7]. It is noted, however, that most of the work 
on continuum topology optimization has been restricted to linear elastic material behavior. Elastic design is historically the 
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most common and most demanded type of design, and continuum topology design is not an exception in this regard. 
Elastoplastic analyses that seek to determine response quantities, especially evolution methods, are known for their high 
computational demand. On the contrary, direct methods of limit analysis are known to require lower computational effort 
to determine limit states in terms of either stress field or displacement/velocity field solutions. In an automated design 
context, where computational efficiency is a primary factor, direct methods of limit analysis become attractive for their 
considerable computational saving potential. Member sizing optimization of specific types of structures, e.g., trusses and 
frames, subject to plastic design constraints has occasionally been treated in the literature using direct methods of plastic 
collapse analysis [8]. Nevertheless, topology design of continuum media, involving this type of analyses, is nearly inexistent 
in the literature. Some research has dealt with continuum topology design of nonlinear elastic structures where the tools 
developed for the linear behavior were adapted and extended to the nonlinear case [2] and only a few tentatives were 
directed to design involving elastoplastic [9] or plastic analyses [10].

The present work is precisely concerned with the integration of direct methods of limit analysis into a methodology for 
plastic topology design of continuum structures. A judicious formulation for this class of problems is proposed such that 
the continuous design problem, which is expressed in terms of continuous material densities as design variables, takes on 
a mathematical form similar to that of a direct limit analysis problem. The computational demand for the topology design 
problem using the proposed approach is consequently expected to be in the order of that of the execution of a single limit 
analysis. In the present paper, the topology design problem of plastic continuum structures is formulated according to the 
microscopic, material approach and based on direct limit analysis. Some of the desirable properties of the design problem 
expressed in terms of continuous densities are highlighted. Formulation in these design variables leads to the so-called 
continuous or porous topologies. It has often been proposed as a preliminary to the ultimate goal of producing optimal 
black and white, i.e. 0–1, topologies. Owing to the recent breakthroughs in material technology, though, it is becoming 
possible to tailor the microstructure to suit a wide range of desired material properties and gradients. This development 
has regenerated interest in continuous topologies. Finally, a number of example design problems are treated to illustrate the 
capabilities of the proposed method and to compare the designs it generates with those produced using existing methods.

2. The static method of limit analysis

The following terminology defined in [11,12] will be adopted in the present paper. A stress field σ is said to be statically 
admissible (SA) if field equilibrium equations, stress vector continuity, and stress boundary conditions are satisfied. It is said 
to be plastically admissible if f (σ ) � 0, where f (σ ) is the plasticity criterion of the material. A stress field σ that is both SA 
and plastically admissible will be said to be fully admissible or simply “admissible”. A loading system Q ∈R

n in equilibrium 
with a statically admissible stress field σ , Q = Q (σ ), is said to be admissible. The n components of Q are called loading 
parameters. The relationship Q = Q (σ ), which usually describes either field equilibrium equations, when body forces are 
present, or boundary conditions on the stress vector, is linear in both cases. A solution of the limit analysis problem relative 
to the ith loading parameter is found by solving the following optimization problem for an admissible stress field σ such 
that:

Q lim = (
Q d

1 , ..., λ0 Q d
i , ..., Q d

n

)
λ0 = max

{
λ, Q (σ ) = (

Q d
1 , ..., λQ d

i , ..., Q d
n

)}
(1)

where Q d is a specified admissible loading. The resulting loading Q (σ ) is a limit loading of the mechanical domain. This 
formulation defines the static, lower bound problem of limit analysis, as it will be dealt with in the present work. Unlike 
the usual response-oriented analysis methods, the lower bound method of limit analysis determines the stress field at the 
limit state only. It provides neither information on the stress field at the intermediate stages of the loading process nor 
on the kinematic quantities at any loading step. For this reason, the method is classified as a direct method. This lack 
of information is compensated by lower computational demand which, in case the missing information is not necessary, 
becomes a paramount advantage. Another merit of the static approach is the status of rigorous lower bound of the limit 
load.

3. Finite-element formulation of the static problem

The numerical plane strain formulation of the static, lower bound problem is described in detail in [13]. Consider a 
triangular finite element discretization of the mechanical domain Ω in the global reference frame (x, y). The stress field is 
assumed to be linear in x and y within the element. Across interelement boundaries, it can be discontinuous, provided the 
stress vector acting on the element boundary remains continuous. In plane strain, the Tresca criterion is written as:

f (σ ) =
√

(σx − σy)2 + (2τxy)2 − 2s � 0 (2)

or equivalently as:

S(σ ) =
√(

σx − σy

2

)2

+ τ 2
xy � s (3)
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