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In this Note, we address the construction of a class of stochastic Ogden’s stored energy 
functions associated with incompressible hyperelastic materials. The methodology relies 
on the maximum entropy principle, which is formulated under constraints arising in part 
from existence theorems in nonlinear elasticity. More specifically, constraints related to 
both polyconvexity and consistency with linearized elasticity are considered and potentially 
coupled with a constraint on the mean function. Two parametric probabilistic models are 
thus derived for the isotropic case and rely in part on a conditioning with respect to the 
random shear modulus. Monte Carlo simulations involving classical (e.g., Neo-Hookean or 
Mooney–Rivlin) stored energy functions are then performed in order to illustrate some 
capabilities of the probabilistic models. An inverse calibration involving experimental 
results is finally presented.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette Note, on s’intéresse à la construction d’une classe de modèles stochastiques 
pour des matériaux hyperélastiques incompressibles. La méthodologie de construction 
repose sur le principe du maximum d’entropie, formulé à partir de contraintes induites 
par les théorèmes d’existence en élasticité non linéaire. Plus précisément, des contraintes 
associées à la polyconvexité et à la cohérence avec l’élasticité linéarisée sont introduites, et 
éventuellement couplées avec une contrainte relative à la fonction moyenne. Deux modèles 
probabilistes paramétriques pour les densités d’énergie considérées sont par suite proposés 
dans le cas isotrope, et reposent notamment sur un conditionnement vis-à-vis du module 
de cisaillement aléatoire. Des simulations numériques de Monte Carlo pour des potentiels 
classiques (e.g., Néo-Hookéen ou Mooney–Rivlin) sont ensuite conduites afin d’illustrer les 
capacités du modèle. Une identification inverse basée sur des résultats expérimentaux est 
enfin présentée.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this work, we address the construction of parametric probabilistic representations for stored energy functions defin-
ing incompressible hyperelastic materials. Such models are dedicated to predictive modeling in nonlinear elasticity, where 
engineered or biological materials can exhibit uncertainties (at some scale of interest) that are worth taking into account. 
This random behavior may arise from, e.g., batch-to-batch variability or processing defects for manufactured composites, or 
from intrinsic variability in the case of complex heterogeneous materials (see [1] and the references therein for a discussion 
regarding experimental results in biomechanics, for instance). Unlike the linear case, where the modeling and propagation 
of uncertainties gave rise to an extensive literature (both in applied mathematics and computational mechanics; see the 
references below), the nonlinear case has surprisingly received little attention – at least, from a modeling standpoint. Un-
certainty propagation from microscale to macroscale was analytically addressed in [2], where bounds on effective properties 
are expressed, by means of Hashin–Shtrikman bounds, in terms of the fluctuation terms. Computational multiscale frame-
works based on a microscale description were further proposed in [3,4] and rely on the combination between interpolation 
schemes (in the space of macroscopic deformations) and polynomial chaos expansions [5]. The construction of relevant 
parametric probabilistic representations for stored energy functions exhibiting some uncertainties therefore remains an in-
tricate and open question. In this paper, we propose a very first contribution to this field in the framework of Information 
Theory, and restrict the derivations to the isotropic case for the sake of readability. The aim is to develop a methodology for 
the derivation of relevant probabilistic models for stochastic stored energy functions, thanks to the principle of maximum 
entropy. In order to ensure mathematical consistency, the latter is formulated under constraints related to existence theo-
rems in nonlinear elasticity and coherence at small strains. These constraints can be subsequently supplemented with an 
additional one associated with the mean function, if need be. The paper is organized as follows. For completeness, a brief 
review of hyperelasticity is first presented in Section 2. The construction of a class of stochastic stored energy functions for 
incompressible hyperelastic materials is then addressed in Section 3. Monte Carlo simulations and an inverse identification 
based on experimental data are finally presented in Section 4 in order to illustrate the model capabilities.

Notation Throughout this paper, use will be made of the following matrix sets:

(i) Md(R) the set of real (d × d) matrices;
(ii) Ld(R) the set of real (d × d) matrices with an unitary determinant.

Deterministic (resp. stochastic) scalar-valued random variables are denoted α or a (resp. α or A). Similarly, deterministic 
(resp. stochastic) vectors are denoted by a (resp. A).

2. Framework for deterministic hyperelasticity

Let � ⊂ R3 be a bounded open connected set with a sufficiently regular boundary, and denote by � its closure. It is 
assumed that � is occupied by a homogeneous incompressible isotropic hyperelastic material characterized by a stored 
energy function ŵ : L3(R) → R such that [6–9]:

[T̂ ([F ])] = ∂ ŵ([F ])
∂[F ] − h̃[F ]−T , ∀[F ] ∈ L3(R) (1)

where [T̂ ] : L3(R) → M3(R) is the response function associated with the first Piola–Kirchoff tensor [T ] : � → M3(R), [F ] is 
the deformation gradient and h̃ is a Lagrange multiplier (which is typically interpreted as an hydrostatic pressure) en-
forcing the incompressibility condition. In addition to isotropy, the stored energy function is classically assumed to satisfy 
frame-invariance, so that according to representation theorems, there exists a function w such that:

ŵ([F ]) = w(υ1([F ]), υ2([F ]), υ3([F ])) (2)

where {υ j([F ])}3
j=1 are the eigenvalues of [F ]. Such a class of strain energy functions was extensively studied for natu-

ral rubbers and proposed, on the basis of phenomenological concerns, by Ogden [10,11]. More specifically, the following 
algebraic form was postulated [10]:

ŵ([F ]) =
m∑

i=1

αi�γi ([F ]) +
n∑

j=1

β jϒδ j ([F ]) , ∀ [F ] ∈ L3(R) (3)

where {αi, γi}m
i=1 and {β j, δ j}n

j=1 are sets of model parameters. In Eq. (3), � : L3(R) → R and ϒ : L3(R) → R are the 
functions defined as

�γi ([F ]) = υ1([F ])γi + υ2([F ])γi + υ3([F ])γi − 3 (4)
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