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For the honeycomb lattice of quantum waveguides, the limit passage is performed when 
the relative thickness h of ligaments tends to zero and the asymptotic structure of the 
spectrum of the Dirichlet Laplacian is described.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Pour la structure en nid d’abeille du guide d’ondes quantique, on réalise un passage 
à la limite lorsque l’épaisseur relative h des liaisons tend vers zéro, et on décrit le 
comportement asymptotique du spectre de l’opérateur laplacien de Dirichlet.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Formulation of the spectral problem

The graph G0 in Fig. 1a can be obtained as a union of the double-periodic family of shifts of the fundamental cell ω0

entered into the parallelogram region ♦ defined by the vectors e± = (
3/2, ±√

3/2
)

and overshadowed in Fig. 1a. In the 
domain Gh = {

x : dist(x, G0) < h
2

}
, that is the h-neighborhood of G0, see Fig. 1b, we consider the spectral Dirichlet problem 

in the variational form

(∇uh,∇vh)
Gh = λh(uh, vh)

Gh ∀vh ∈ H1
0

(
Gh)
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Fig. 1. The graph G0 and h-neighborhood Gh where the width of the ligaments is h.

Fig. 2. The cell ωh .

and study the asymptotics of its spectrum σ h as h → +0. Here, ∇ is the gradient, ( , )Gh the scalar product in L2
(
Gh

)
and 

the Sobolev space H1
0

(
Gh

)
of functions vanishing at the boundary ∂Gh .

The Floquet–Bloch theory, cf. [1,2], provides the band-gap structure of the spectrum

σ h =
∞⋃

n=1

Bh
n with the spectral bands Bh

n =
{
�h

n(θ) : θ = (θ+, θ−) ∈ [−π,π ]2
}

⊂ R+ (1)

defined by the eigenvalues 
{
�h

n(θ)
}

of the model problem on the periodicity cell ωh = Gh ∩♦,

(∇U h,∇V h)
ωh = �h(U h, V h)

ωh ∀V h ∈ H1
0

(
ωh; θ)

where H1
0

(
ωh; θ)

is a subspace of functions V ∈ H1
(
ωh

)
subject to the conditions

V (x) = 0, x ∈ ∂ωh \ ∂♦, V � τ h
r± = eiθ± V � τ h

l± (2)

Here, τ h
p± are the ends of the “legs” of ωh indicated in Fig. 2 and supplied with the indices p = l (left) and p = r (right). 

Moreover, θ = (θ+, θ−) is the Floquet variable, which is not displayed explicitly as an argument for functions U h (x; θ), 
V h (x; θ), and �h(θ) is a new notation for the spectral parameter. Clearly, the functions [−π,π ]2 � θ �→ �h

n(θ) ∈ (0,+∞)

are continuous and 2π -periodic in θ± .

2. The graph models

Since the groundbreaking experiment [3] of the extraction of carbon flakes, graphene, many publications focus on the 
examination of the spectrum of hexagonal lattices. In pioneering [4,5] and subsequent papers, the classical Pauling model 
[6] was accepted. Namely, they assume the asymptotic ansatz for the eigenvalues of the Dirichlet Laplacian to be

λh = h−2π2 + β +O(h) (3)

where β is the eigenvalue of the limit problem
(
∂zu0, ∂z v0)

ω0 = β
(
u0, v0)

ω0 ∀v0 ∈ H1(ω0; θ)
(4)

with the Kirchhoff transmission conditions at the interior nodes P± = (±1/2,0) and the quasi-periodicity conditions inher-
ited from (2) at the exterior nodes. That is, functions in the subspace H1

(
ω0; θ)

are continuous at P± . As a result, a quite 
intricate band-gap structure of the spectrum was described in [5].

The Kirchhoff conditions are rigorously justified in [7,8] (see also [9–11]) for the Neumann problem (where h−2π2 is 
omitted in (3)) while the Dirichlet problem does not retrieve a completed examination yet. An original approach developed 
in [7] (see also [12]) demonstrates that the limit conditions at P± depend on the boundary layer effects in the vicinity of 
nodes in a thin Dirichlet junction. For the quantum honeycomb lattice Gh , the boundary layer appears as solutions in the 
infinite waveguide Y in Fig. 3a, and its investigation is a principal issue of our note because variational methods useful in 
the Neumann case do not work in the Dirichlet one. However, Theorems 3.1 and 3.2 entail that, first, the asymptotic ansatz 
(3) is not suitable for the low-frequency range of the spectrum (1) and, second, the limit problem (4) involves the Dirichlet 
conditions
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