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A rigorous study of the asymptotic behavior of the system constituted by a very thin
linearly piezoelectric plate bonded on a linearly elastic body supplies various models for
an elastic body monitored by a piezoelectric patch.
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r é s u m é

Une étude rigoureuse du comportement asymptotique du système constitué par une plaque
linéairement piézoélectrique collée sur un corps linéairement élastique fournit divers
modèles de contrôle de structures élastiques par des patches piézoélectriques.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Many studies dealing with the mathematical modeling of piezoelectric devices were devoted to the behavior of the sole
patches and provided various asymptotic models for thin linearly piezoelectric plates (see [1] and the references therein).
However, the essential technological interest of piezoelectric patches being the monitoring of a deformable body they are
bonded to, here we intend to propose various asymptotic models for the behavior of the body through the study of the system
constituted by a very thin linearly piezoelectric flat patch perfectly bonded to a linearly elastic three-dimensional body.
A reference configuration for the body is an open set Ω laying in {x3 < 0} whose part of its Lipschitz-continuous boundary
∂Ω is a non-empty domain S in {x3 = 0} and such that S × (−L,0) is included in Ω for some positive real number L, while
the patch occupies Bε := S × (0, ε), ε being a small real number; let Oε := Ω ∪ S ∪ Bε . The body is clamped on a part Γ0
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of ∂Ω \ S with a positive two-dimensional Hausdorff measure H2(Γ0), and subjected to body forces and surface forces on
Γ1 := ∂Ω \ (S ∪ Γ0) of densities f and F . Moreover, for all δ in R, let Sδ denote S + δe3, {e1, e2, e3} being a basis of the
Euclidean physical space assimilated to R3, surface forces of density G acts on Sε whilst the patch is free of mechanical
loading and electric charges in Bε and on its lateral boundary ∂ S × (0, ε). If uε , e(uε), σε denote the fields of displacement,
strain and stress in Oε and ϕε , Dε stand for the electric potential and the electric displacement, part of the equations
describing the electromechanical equilibrium read as:⎧⎪⎪⎨⎪⎪⎩

divσε = f̃ in Oε, uε = 0 on Γ0, σ εn = F on Γ1, σ εn = Gε on Sε, σ εn = 0 on ∂ S × (0, ε)

div Dε = 0 in Bε, Dε · n = 0 on ∂ S × (0, ε)

σ ε = ae
(
uε

)
in Ω,

(
σε, Dε

) = 1

ε
M

(
e
(
uε

)
,∇ϕε

)
in Bε

(1)

f̃ is the extension of f to Bε by 0, n is the unit outward normal and a denotes the elasticity tensor which satisfies:

a ∈ L∞(
Ω; Lin

(
S3)), ∃c; c|e|2 � a(x)e · e, ∀e ∈ S3, a.e. x ∈ Ω (2)

where Lin(SN ) is the space of linear operators on the space SN of N × N symmetric matrices whose inner product and norm
are noted · and | · | as in R3. If H := S3 × R3 is equipped with an inner product and a norm also denoted as previously,
then M is an element of L∞(S ×R; Lin(H)) independent of x3 satisfying:

M =
[

α −β

βT γ

]
, ∃κ > 0; κ |e|2 � α(x)e · e, κ |g|2 � γ (x)g · g, ∀(e, g) ∈H, a.e. x ∈ S ×R (3)

The models will be distinguished according to the additional necessary boundary conditions on Sε and S , characterized by
an index p in {1,2}2. Case p1 = 1 corresponds to a condition for the electric displacement on Sε:

Dε · n = qε on Sε (4)1

qε being a density of electrical charges, while p1 = 2 corresponds to a condition of given electrical potential:

ϕε = ϕε
0 on Sε (4)2

roughly speaking, p1 = 1 deals with patches used as sensors, whereas p1 = 2 concerns actuators (see [1,2]). Index p2
accounts for the status of the interface between the patch and the body: p2 = 1 corresponds to an electrically impermeable
interface, p2 = 2 corresponds to a grounded interface:

Dε · n = 0 on S (5)1

ϕε = 0 on S (5)2

It will be convenient to use the following notations:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

k̂ := (ê, ĝ), ê := (eαβ)α, β∈{1,2}, ĝ := (g1, g2), ∀k = (e, g) ∈H

ẽ ∈ S3; ẽαβ = eαβ, 1 � α,β � 2, ẽi3 = 0, 1 � i � 3,∀e ∈ S2

k(r) = k(v,ψ) := (
e(v),∇ψ

)
, ∀r = (v,ψ) ∈ H1(Bε;R3) × H1(Bε

)
e(v) ∈ D′(S;S2); (

e(v)
)
αβ

= 1

2
(∂α vβ + ∂β vα), ∀v ∈ D′(S;R2)

(6)

where the same symbol e(·) stands for the symmetrized gradient in the sense of distributions of D′(O;R3), O ∈
{Ω, Bε,Oε}, or D′(S;R2). Moreover we introduce some spaces, linear and bilinear forms in order to supply a variational
formulation of (1)–(5). An electromechanical state will be an element r = (v,ψ) of

V p := H1
Γ0

(
Oε;R3) × Φp, Φ(1,1) = H1(Bε

)
, Φ(1,2) = H1

S

(
Bε

)
, Φ(2,1) = H1

Sε

(
Bε

)
, Φ(2,2) = H1

S∪Sε

(
Bε

)
(7)

where, for any domain O of R3, H1
Γ (O;R3) and H1

Γ (O) respectively denote the subspaces of H1(O;R3) and H1(O) of all
elements with vanishing traces on a part Γ of ∂O. One makes the following assumptions on the data:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ϕ0 denotes the restriction to S of an element of H1/2({x3 = 0}) still denoted by ϕ0

( f , F , G,q) ∈ L2(Ω;R3) × L2(Γ1;R3) × L2(S;R3) × L2(S
)
,

∫
S

q dx̂ = 0

Gε(x + εe3) = G(x), qε(x + εe3) = q(x), ϕε
0 (x + εe3) = εϕ0(x), a.e. x ∈ S

(8)

It is well known that for all ϕ0 in H1/2({x3 = 0}), there exists an element of H1(S × (−L,0)) when p2 = 1, H1
S−L (S × (−L,0))

when p2 = 2, still denoted by ϕ0 whose trace on S is ϕ0. Hence the element ϕε
o,p of Φp defined by ϕε

o,p(x) = εϕ0(x̂, (x3 −
ε)L/ε) satisfies:
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