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The isotropic Hencky strain energy appears naturally as a distance measure of the
deformation gradient to the set SO(n) of rigid rotations in the canonical left-invariant
Riemannian metric on the general linear group GL(n). Objectivity requires the
Riemannian metric to be left-GL(n)-invariant, isotropy requires the Riemannian metric to
be right-O(n)-invariant. The latter two conditions are only satisfied for a three-parameter
family of Riemannian metrics on the tangent space of GL(n). Surprisingly, the final result
is basically independent of the chosen parameters.
In deriving the result, geodesics on GL(n) have to be parameterized and a novel
minimization problem, involving the matrix logarithm for non-symmetric arguments, has
to be solved.

© 2014 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

L’énergie isotrope de Hencky est une mesure naturelle de la distance du gradient de
déformation à l’ensemble des rotations rigides SO(n) dans la métrique riemanienne
canonique du groupe linéaire GL(n). Le principe d’indifférence matérielle exige que la
métrique soit GL(n)-invariante à gauche, et l’isotropie implique son invariance à droite par
O(n). Ces deux conditions sont uniquement satisfaites par une famille à trois paramètres
de métriques riemaniennes sur l’espace tangent à GL(n). On note cependant que le résultat
final se révèle, en essence, indépendant des paramètres choisis. Pour obtenir ce résultat,
on effectue une paramétrisation des géodésiques de GL(n) et l’on résout un problème de
minimisation qui fait intervenir le logarithme de matrices non symétriques.

© 2014 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

For the deformation gradient F = ∇ϕ ∈ GL+(n) let U = √
F T F be the symmetric right Biot-stretch tensor. We show that

the isotropic Hencky strain energy, which was introduced by H. Hencky in 1928 [1] and is defined on the logarithmic strain
tensor log U via
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W (F ) = μ‖dev log U‖2 + κ

2

[
tr(log U )

]2 = μ‖dev log U‖2 + κ

2
(log det F )2 (1)

measures the geodesic distance of F to the group of rotations SO(n) where GL(n) is viewed as a Riemannian manifold
endowed with a left-invariant metric that is also right O(n)-invariant (isotropic), and where the coefficients μ,κ > 0
correspond to the shear modulus and the bulk modulus, respectively. Furthermore, the results provide yet another char-
acterization of the polar decomposition F = RU , R ∈ SO(n), U ∈ PSym(n), since U also provides the minimal Euclidean
distance to SO(n), i.e. [2],

dist2
euclid

(
F ,SO(n)

) := min
Q ∈SO(n)

dist2
euclid(F , Q ) = min

Q ∈SO(n)
‖F − Q ‖2 = ‖F − R‖2 = ‖U − 1‖2 (2)

where the Euclidean distance dist2
euclid(X, Y ) := ‖X − Y ‖2 is the length of the line segment joining X and Y in R

n2
, 1 ∈

GL+(n) is the identity and ‖X‖ = √
tr(X T X) denotes the Frobenius matrix norm here and henceforth. For both the Euclidean

and the geodesic distance, the orthogonal factor R = polar(F ) in the polar decomposition of F is the nearest rotation to F .

2. Strain tensors in linear and nonlinear elasticity

We consider an elastic body which in a reference configuration occupies the bounded domain Ω ⊂ R
3. Deformations of

the body are prescribed by mappings ϕ :Ω → R
3, where ϕ(x) denotes the deformed position of the material point x ∈ Ω .

Central to elasticity theory is the notion of strain, which is a tensor depending on the deformation such that vanishing strain
implies that the body Ω has been moved rigidly in space. Various such tensors exist, e.g. the Green strain tensor 1

2 (U 2 − 1),
the generalized Green strain tensor 1

m (Um − 1), where m is a nonzero integer, and the Hencky (or logarithmic) strain tensor
log U .

In linearized elasticity, one considers ϕ(x) = x+u(x), where u :Ω ⊂ R
3 →R

3 is the displacement. The classical linearized
strain tensor is ε = sym∇u. It appears through a matrix-nearness problem in the Euclidean distance

dist2
euclid

(∇u, so(3)
) := min

W ∈so(3)
‖∇u − W ‖2 = ‖ sym ∇u‖2 (3)

where so(3) denotes the set of all skew symmetric matrices in R
3×3. Indeed, sym∇u qualifies as a linearized strain tensor:

if dist2
euclid(∇u, so(3)) = 0 then u(x) = Ŵ .x + b̂ is a linearized rigid movement. This is the case since

dist2
euclid

(∇u(x), so(3)
) = 0 ⇒ ∇u(x) = W (x) ∈ so(3) (4)

and 0 = Curl∇u(x) = Curl W (x) implies that W (x) is constant, see [3]. In nonlinear elasticity theory, one assumes that
∇ϕ ∈ GL+(3) (no self-interpenetration of matter) and may consider the matrix nearness problem

dist2
euclid

(∇ϕ,SO(3)
) := min

Q ∈SO(3)
‖∇ϕ − Q ‖2 = min

Q ∈SO(3)

∥∥Q T ∇ϕ − 1
∥∥2 = ∥∥√

∇ϕT ∇ϕ − 1
∥∥2

, (5)

where the last equality is due to (2). Indeed, the Biot strain tensor
√∇ϕT ∇ϕ − 1 qualifies as a nonlinear strain tensor: if

dist2
euclid(∇ϕ,SO(3)) = 0 then ϕ(x) = Q̂ .x + b̂ is a rigid movement. This is the case since

dist2
euclid

(∇ϕ,SO(3)
) = 0 ⇒ ∇ϕ(x) = Q (x) ∈ SO(3) (6)

and 0 = Curl∇ϕ(x) = Curl Q (x) implies that Q (x) is constant, see [3].
In geometrically nonlinear, physically linear isotropic elasticity, the formulation of a boundary value problem of place

may now be based on minimizing the quadratic Biot strain energy

E(ϕ) =
∫
Ω

μ
∥∥dev

[√∇ϕT ∇ϕ − 1
]∥∥2 + κ

2

(
tr

√
∇ϕT ∇ϕ − 1

)2
dx, ϕ|ΓD = ϕ0, (7)

where μ,κ > 0 are the shear modulus and bulk modulus, respectively.
However, since the Euclidean distance in (5) is an arbitrary choice, novel approaches in nonlinear elasticity theory aim at

putting more geometry (i.e. respecting the group structure of the deformation mappings) into the description of the strain a
material endures. In our context, it is now natural to consider a strain measure induced by the geodesic distances stemming
from choices for the Riemannian structure respecting also the algebraic group structure of GL+(n), which we introduce next.

3. Left invariant Riemannian metrics on GL(n)

Viewing GL(n) as a Riemannian manifold endowed with a left invariant metric:

gH : T H GL(n) × T H GL(n) →R : gH (X, Y ) = 〈
H−1 X, H−1Y

〉
, H ∈ GL(n), (8)
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