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In this article, we aim at proposing a general mathematical formulation for charge-
conserving finite-element Maxwell solvers coupled with particle schemes. In particular, 
we identify the finite-element continuity equations that must be satisfied by the discrete 
current sources for several classes of time-domain Vlasov–Maxwell simulations to preserve 
the Gauss law at each time step, and propose a generic algorithm for computing 
such consistent sources. Since our results cover a wide range of schemes (namely 
curl-conforming finite element methods of arbitrary degree, general meshes in two or 
three dimensions, several classes of time discretization schemes, particles with arbitrary 
shape factors and piecewise polynomial trajectories of arbitrary degree), we believe that 
they provide a useful roadmap in the design of high-order charge-conserving FEM–PIC 
numerical schemes.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Particle-In-Cell (PIC) solvers are a major tool for the understanding of the complex behavior of a plasma or a particle 
beam in many situations. An important issue for electromagnetic PIC solvers, where the fields are computed using Maxwell’s 
equations, is the problem of discrete charge conservation. In a nutshell, the problem consists in updating the electromagnetic 
field via Ampère and Faraday’s equations in such a way that it satisfies a discrete Gauss law at each time step. Indeed the 
charge and current densities ρ and J computed numerically from the particles do not necessarily verify a proper continuity 
equation, so that Maxwell’s equations with these sources might be ill-posed.

Existing answers to this issue can be decomposed into two classes, namely field correction methods, which consist in 
modifying the inconsistent electric field resulting from an ill-posed Maxwell solver, see, e.g., [1–5], and charge-conserving 
methods, which compute the current density in a specific way so as to enforce a discrete continuity equation, see, e.g., 
[6–9]. The zigzag method of Umeda et al. [9] has been extended to higher orders by Yu et al. [10]. Note also the recent 
extension of the Esirkepov method [8] to high-order time schemes, given in [11]. Compared to those of the former class, 
methods enforcing a discrete continuity equation have the advantage to be local and not to modify the electromagnetic field 
away from the source, which may generate causality errors for some applications. However, their application to arbitrary 
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finite-element methods (FEM) built on unstructured simplicial meshes is not straightforward. For example, the early virtual 
particle method of Eastwood [6,12] has been essentially described in the context of structured grids such as straight or 
curvilinear Cartesian meshes, and for particles with simple shape factors.

In this work, we aim at bridging this gap and propose a unified formulation for curl-conforming finite elements (the 
so-called edge elements) coupled with particle schemes. This allows us to derive a general roadmap for the design of 
charge-conserving FEM–PIC schemes of arbitrary order both in time and space, that are built on general polygonal or poly-
hedral meshes. In particular, we extend the virtual particle method of Eastwood into a compact algorithm that also covers 
the case of arbitrary shape factors and piecewise polynomial trajectories of arbitrary degree.

The article is organized as follows. In Section 2, we provide a rigorous finite-element formulation of the continuity equa-
tion that should be satisfied by the sources for the discrete Maxwell system to be well posed. We next derive consistency 
criteria for several classes of time integration schemes such as the leap-frog scheme, higher-order symplectic Runge–Kutta 
and Cauchy–Kowalewskaya schemes of arbitrary order. In Section 3, we then establish that the time-averaged current densi-
ties based on particle representations with arbitrary shape factors satisfy the appropriate finite-element continuity equation. 
We also propose a generic algorithm for computing the resulting charge-conserving currents, that is valid for arbitrary par-
ticle shapes, high-order trajectories and any choice of finite-element basis functions. Finally, in Section 4 we illustrate the 
validity of the algorithm with a 2D diode test case and the Landau damping problem, and in Section 5 we summarize our 
findings.

2. Charge conserving FEM Maxwell solvers

In this section we recall the curl-conforming variational formulation of Maxwell’s equations

∂t E − c2 curl B = −ε0
−1 J (1)

∂t B + curl E = 0 (2)

div E = ε0
−1ρ (3)

div B = 0 (4)

and derive proper consistency criteria for associated FEM discretizations.
Throughout the article, we assume that Ω is a bounded, Lipschitz-continuous polyhedral domain in Rd , d = 2, 3, and we 

consider the above system complemented with both smooth initial data E0, B0, and boundary conditions of either metallic 
or absorbing type, i.e.,

E × n =
{

0 on ΓM

cμ0(H × n) × n on ΓA
with ∂Ω = ΓM ∪ ΓA

As the absorbing boundary conditions are only used in regions of space where there are no particles, they play no role in 
our discussion.

What will guide us throughout this exercise is the following well-known formal observation: if Ampère’s law (1) is 
satisfied at all times, then Gauss’s law (3) is satisfied at all times if and only if it is satisfied at the initial time and the 
sources satisfy a continuity equation

∂tρ + div J = 0 (5)

which simply states that the current density J is the flow of the electric charge density ρ . Aside from an elementary 
proof—take the divergence of Ampère’s law and invoke the fact that a curl is always divergence free—this equivalence has 
indeed an essential corollary. Namely, since ρ and J must satisfy (5) for the Maxwell system to be well-posed, it suffices 
to satisfy Gauss’s law at initial time for it to hold at any time. We shall now see how this basic property translates into a 
variational framework.

2.1. Variational charge conservation

Throughout the article, we will denote by V ε and V μ the function spaces used to represent the fields E and B , respec-
tively. In particular, the variational forms of Ampère’s and Faraday’s law will involve test functions from these respective 
spaces. The space of test functions involved by the variational Gauss law will be denoted by V . It can be seen as the natural 
space for representing the electrostatic potential φ. Since we consider curl-conforming formulations, and because for sim-
plicity we restrict ourselves to homogeneous conditions corresponding to perfectly conducting boundaries, we shall assume 
that

V ε ⊂ H0(curl;Ω) and V μ ⊂ H(div;Ω) (6)

The variational form of Ampère and Faraday’s laws is then usually obtained by integration by parts [13]. It consists in 
looking for E and B in the respective spaces C 1([0, T ]; V ε) and C 1([0, T ]; V μ), such that for all t ∈ [0, T ],
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