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Standard methods employed in relativistic electromagnetic Particle-In-Cell codes are 
reviewed, as well as novel techniques that were introduced recently. Advances in the 
analysis and mitigation of the numerical Cherenkov instability are also presented with 
comparison between analytical theory and numerical experiments. The algorithmic and 
numerical analytic advances are expanding the range of applicability of the method in 
the ultra-relativistic regime in particular, where the numerical Cherenkov instability is the 
strongest without corrective measures.
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1. Introduction

Computer simulations of self-consistent electromagnetics and relativistic particle kinetics are critical to the design and 
understanding of particle accelerators, laser–plasma interaction, fusion or plasma experiments and to the study of space 
plasmas. For such simulations, the most popular algorithm is the Particle-In-Cell (or PIC) technique, which represents elec-
tromagnetic fields on a grid and particles by a sample of macroparticles. In Section 2 of this paper, we review the standard 
methods employed in relativistic electromagnetic PIC codes, as well as novel techniques that were introduced recently in 
the code Warp [1,2]. Recent advances in the analysis and mitigation of the numerical Cherenkov instability are presented in 
Section 3, with comparison between analytical theory and numerical experiments using Warp.

2. Particle-In-Cell main steps

In the electromagnetic Particle-In-Cell method [3], the electromagnetic fields are solved on a grid, usually using Maxwell’s 
equations

∂B

∂t
= −∇ × E (1)

∂E

∂t
= ∇ × B − J (2)

∇ · E = ρ (3)

∇ · B = 0 (4)
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Fig. 1. Layout of field components on the staggered “Yee” grid. Charge density is defined at the nodes, current densities and electric fields on the edges of 
the cells and magnetic fields on the faces.

given here in natural units (ε0 = μ0 = c = 1), where t is time, E and B are the electric and magnetic field components, 
and ρ and J are the charge and current densities. The charged particles are advanced in time using the Newton–Lorentz 
equations of motion

dx

dt
= v (5)

d(γ v)

dt
= q

m
(E + v × B) (6)

where m, q, x, v and γ = 1/
√

1 − v2 are respectively the mass, charge, position, velocity and relativistic factor of the particle 
given in natural units (c = 1). The charge and current densities are interpolated on the grid from the particles’ positions and 
velocities, while the electric and magnetic field components are interpolated from the grid to the particles’ positions for the 
velocity update.

2.1. Field solve

Various methods are available for solving Maxwell’s equations on a grid, based on finite-differences, finite-volume, finite-
element, spectral, or other discretization techniques that apply most commonly on single structured or unstructured meshes 
and less commonly on multiblock multiresolution grid structures. In this paper, we summarize the widespread second order 
Finite-Difference Time-Domain (FDTD) algorithm, its extension to non-standard finite-differences as well as the Pseudo-
Spectral Analytical Time-Domain (PSATD) and Pseudo-Spectral Time-Domain (PSTD) algorithms. Extension to multiresolution 
(or mesh refinement) PIC is described in, e.g. [2,4].

2.1.1. Finite-Difference Time-Domain (FDTD)
The most popular algorithm for electromagnetic PIC codes is the Finite-Difference Time-Domain (or FDTD) solver

DtB = −∇ × E (7)

DtE = ∇ × B − J (8)

[∇ · E = ρ] (9)

[∇ · B = 0] (10)

The differential operator is defined as ∇ = Dxx̂ + D y ŷ + Dz ẑ and the finite difference operators in time and space are 
defined respectively as Dt G|ni, j,k = (G|n+1/2

i, j,k − G|n−1/2
i, j,k )/�t and DxG|ni, j,k = (G|ni+1/2, j,k − G|ni−1/2, j,k)/�x, where �t and �x

are respectively the time step and the grid cell size along x, n is the time index and i, j and k are the spatial indices 
along x, y and z respectively. The difference operators along y and z are obtained by circular permutation. The equations 
in brackets are given for completeness, as they are often not actually solved, thanks to the usage of a so-called charge 
conserving algorithm, as explained below. As shown in Fig. 1, the quantities are given on a staggered (or “Yee”) grid [5], 
where the electric field components are located between nodes and the magnetic field components are located in the center 
of the cell faces.

2.1.2. Non-Standard Finite-Difference Time-Domain (NSFDTD)
In [6,7], Cole introduced an implementation of the source-free Maxwell’s wave equations for narrow-band applications 

based on Non-Standard Finite-Differences (NSFD). In [8], Karkkainen et al. adapted it for wideband applications. At the 
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