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We investigate the boundary condition between a free fluid and a porous medium,
where the interface between the two is given as a periodically curved structure. Using
a coordinate transformation, we can employ methods of periodic homogenisation to derive
effective boundary conditions for the transformed system. In the porous medium, the fluid
velocity is given by Darcy’s law with a non-constant permeability matrix. In tangential
direction as well as for the pressure, a jump appears. Its magnitudes can be calculated
with the help of a generalised boundary layer function. The results can be interpreted as a
generalised law of Beavers and Joseph for curved interfaces.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

On considère le comportement d’un fluide libre au-dessus d’un milieu poreux avec une
interface courbée périodique. Utilisant une transformation des coordonnées, on peut
utiliser des méthodes d’homogénéisation périodique pour la dérivation des conditions aux
limites. Le comportement du fluide en milieu poreux est donné par une loi de Darcy
avec une matrice de perméabilité non constante. Ensuite, on obtient le comportement du
fluide à l’interface. Une discontinuité apparaît pour la pression ainsi que pour la vitesse
tangentielle. L’amplitude des discontinuités peut être calculée par une fonction de couche
limite généralisée. Ainsi, les résultats donnent une loi généralisée de Beavers et Joseph
pour des interfaces courbées.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The interface condition coupling a free flow with a flow in a porous medium is of great interest in mathematical
modelling, groundwater flow or soil chemistry, among others. From a physical point of view, the fluid velocity of an incom-
pressible fluid has to be continuous in normal direction to the interface due to mass conservation. However, other conditions
are not so obvious due to the different nature of the governing equations: For the free fluid, the Stokes or Navier–Stokes
equation is of second order for the velocity and of first order for the pressure, whereas for the Darcy equation in the porous
medium the order of the terms is exchanged. By practical experiments, Beavers and Joseph [1] concluded that a jump in
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the effective velocities appears in tangential direction. Using a statistical approach, this condition was verified by Saffman
in [2]. However, some parameters in this approach still need to be determined by experiments.

Starting in 1996, Willie Jäger and Andro Mikelić applied the theory of homogenisation to the problem. They first devel-
oped a theory of mathematical boundary layers in [3], using these to rigorously derive Saffman’s modification of the jump
condition:

√
kε (∇vFν) · τ = αvF · τ +O

(
kε

)
(1)

in [4], where vF denotes the velocity of the free fluid at the interface; kε = kε2 is the (scalar) permeability of the porous
medium (where ε denotes its characteristic length), and ν and τ are the unit normal and unit tangential vector, respectively.
The slip-coefficient α can be calculated explicitly. They considered a situation that corresponds to the experimental setup of
Beavers and Joseph. Later in [5], Mikelić and Marciniak-Czochra extended the results to an arbitrary body force, which gave
an additional pressure jump condition. However, all the results above suffer from one drawback: only a planar boundary
in the form of a line or a plane is considered. Therefore, the effect of a possible curvature of the interface is not known.
Generalisations of the boundary layers in [3] were developed by Maria Neuss-Radu in [6]. However, applications only treat
reaction–diffusion systems without flow, and explicit results can only be obtained in the case of a layered medium, see [7].

In [8] we proposed a new approach to consider the case of a non-flat interface by using a coordinate transformation.
In this note — using generalised boundary layer functions developed in [9] — we are able to derive boundary conditions of
Beavers and Joseph for the case of a periodically curved non-flat interface.

2. Overview of the geometries

In this section we describe the main geometrical settings that are used throughout this work. Let L, K ,h > 0. Then Ω :=
(0, L)× (−K ,h) is a rectangular domain in R

2 (later corresponding to the reference domain) with parts Ω1 := (0, L)× (0,h)

(later the reference free fluid domain), Ω2 := (0, L)× (−K ,0) (the reference porous medium) and Σ = (0, L)×{0} (later the
reference interface). Let g ∈ C∞(R) be a given function such that g(y + L) = g(y) for all y ∈ R. We consider g to describe
a periodic curved structure in our domain of interest. Define the coordinate transformation:

ψ : Ω −→ Ω̃,

(
x1
x2

)
�−→

(
z1
z2

)
=

(
x1

x2 + g(x1)

)

such that Ω̃ = ψ(Ω), Ω̃1 := ψ(Ω1), Ω̃2 := ψ(Ω2) and Σ̃ := ψ(Σ) = {(y, g(y))|y ∈ (0, L)}. We are interested in the be-
haviour of a fluid flowing through the curved channel Ω̃ , where Ω̃1 represents a domain with a free fluid flow, and Ω̃2 is
a porous medium. We are especially interested in the behaviour of the fluid at the curved boundary Σ̃ . Let Ω̃S � Ω̃2 be a
given solid inclusion. We will use a sequence of such inclusions to create a porous medium via homogenisation theory.

To do so, define an ε-periodic geometry in Ω2 by the use of a reference cell Y := [0,1]2, containing a connected open
set YS (corresponding to the solid part of the cell). Its boundary ∂YS is assumed to be of class C∞ with ∂YS ∩ ∂Y = ∅. Let
Y ∗ := Y \YS be the fluid part of the reference cell.

For given ε > 0 such that L
ε ∈ N, let χ be the characteristic function of Y ∗ , extended by periodicity to the whole R

2. Set
χε(x) := χ( x

ε ) and define the fluid part of the porous medium as Ωε
2 = {x ∈ Ω2 | χε(x) = 1}. The fluid domain is then given

by Ωε = Ω1 ∪ Σ ∪ Ωε
2 , and the solid part by ΩS = Ω2\Ωε

2 .
In order to obtain the effective fluid behaviour near Σ , we have to define a number of so-called boundary layer problems.

To this end, we introduce the following setting: we consider the domain [0,1] × R subdivided as follows: Z+ = [0,1] ×
(0,∞) corresponds to the free fluid region, whereas the union of translated reference cells Z− = ⋃∞

k=1{Y ∗ − (0
k

)}\S is
considered to be the void space in the porous part. Here S = [0,1] × {0} denotes the interface between Z+ and Z− . Finally,
let Z = Z+ ∪ Z− and ZBL = Z+ ∪ S ∪ Z− be the fluid domain without and with interface.

3. Fluid behaviour at the interface — main results

For a given body force f̃ ∈ L2(Ω̃), we assume that a mathematical description of the fluid is given by the steady-state
Stokes equation with no slip condition on the boundary of the solid inclusion and on the outer walls:

−μ�zũ(z) + ∇z p̃(z) = f̃ (z) in Ω̃\Ω̃S

divz
(
ũ(z)

) = 0 in Ω̃\Ω̃S

ũ(z) = 0 on ∂Ω̃S ∪ ∂Ω̃\({z1 = 0} ∪ {z1 = L})
ũ, p̃ are L-periodic in x1

Here μ > 0 denotes the dynamic viscosity. We are looking for a velocity field ũ ∈ H1(Ω̃)2 and a pressure p̃ ∈ L2(Ω̃)/R.
The Stokes equation is an approximation of the full Navier–Stokes equation which is valid for low Reynolds number flows.
Using the transformation rules for the differential operators (see [8]), we obtain the following equation for the transformed
quantities uε(x) = ũ(ψ(x)), pε(x) = p̃(ψ(x)) and f (x) = f̃ (ψ(x)) in the rectangular domain Ω:
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