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This is a discussion of the present understanding of transition to turbulence in parallel 
flows, based upon the idea that it arises from a subcritical instability. The result is 
a coupled set of equations, one amplitude equation in the direction of translational 
invariance of the geometry coupled with the standard Reynolds equation for the average 
transfer of momentum. It helps to understand a basic feature of the transition in parallel 
flows, namely that turbulence manifests itself in localised domains growing at a constant 
speed depending on the Reynolds number.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Historical introduction

The transition to turbulence is observed in flows when their speed with respect to the walls increases beyond a certain 
limit. This transition is generally attributed to the fact that, beyond this critical speed, the flow becomes unstable, an idea 
that can be traced back to a founding paper in fluid mechanics by Osborne Reynolds in 1883 [1]. How important it was, 
this paper was not written very clearly and its conclusions were somewhat ambiguous. Perhaps this explains why part of its 
message has been more or less forgotten over the years. To take an example, by reading a review on the transition in parallel 
flows [2] one sometimes finds the word “instability” in tentative explanations of the occurrence of localised structures, but 
without any clear definition of what is meant there. To explain that a fluid crosses the boundary of a turbulent spot in both 
the laminar-to-turbulent and turbulent-to-laminar directions Coles writes that there should be “some kind of strong local 
instability in the vorticity-bearing ambient flow”, a rather wide (and unexplained) extrapolation of what is understood as 
an instability. This seems to imply that unstable fluctuations are carried by fluid velocity, which is incorrect for the flow 
considered in that paper (spirals in Taylor–Couette flows) at finite Reynolds numbers and where the advection of vorticity 
by the fluid is far from perfect, since such an advection exists in the inviscid limit only. Coles seems to imply that turbulence 
can grow only as the result of an instability, although I argue below that localised turbulent structures grow by a process 
of contamination and not by an instability, local or not. Therefore it seems pertinent to reconsider first what is meant by 
instability in the context of fluid mechanics and in parallel flows.

Stability theory is almost as old as Science as we know it and it kept a strong relationship to fluid mechanics from 
its very beginning. 2300 years ago Archimedes of Syracuse (Sicily) solved the problem of stability of what we would call 
2D floating bodies with a parabolic cross section [3]. Using a geometrical method he proved that, if the floating body is a 
parabolic cylinder of uniform mass density cut horizontally above a certain height, its vertical equilibrium becomes unstable 
against tilting. Archimedes even found the new equilibrium positions. This was the beginning of studies of stability in 
fluid mechanics. As it is out of question to review here the whole history of the field, I jump to another very significant 
development of this idea of stability in fluid mechanics.
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The next step we shall mention is the explanation of how wind excites waves on the surface of the sea. The theory 
of waves without wind begins in Newton’s Principia, where it was shown that the wave speed is proportional to the 
square root of the wavelength. This result was established (without solving anything like a partial differential equation) by 
neglecting the air, windy or not, and by neglecting nonlinear effects, this being correct, as pointed by Newton, whenever 
the slope of the surface is small. This does not explain the obvious relationship between the wind strength and the wave 
height. A first link between water waves and wind was established by Kelvin and by Helmholtz almost two centuries after 
the Principia. In separate works they considered the dynamics of small-amplitude fluctuations of the sea surface under 
the effect of a wind blowing at uniform speed, all this done in the framework of inviscid fluid dynamics. Although the 
instability of the fluctuations derived in this way is weak, there is presently no good theory explaining how the linear 
Kelvin–Helmholtz instability is saturated by dissipation phenomena (mostly by wave breaking [4]).

This theory of Kelvin–Helmholtz instability in the linear approximation made the model of many subsequent studies 
of linear stability, culminating with the thesis by Werner Heisenberg in 1924 under the guidance of Sommerfeld. In this 
masterpiece of WKB analysis, Heisenberg [5] showed that, with viscosity included, the plane Poiseuille flow is linearly 
unstable above a critical Reynolds number, although it is always linearly stable without viscosity. In 1966, Iordanskii and 
Kulikovskii [6] showed that this flow is convectively, not absolutely, unstable. Although Heisenberg explained his paradoxical 
result (friction is responsible for instability), it met a strong opposition and various (incorrect) proofs of its “erroneous” 
character were published.

With the advent of artificial flight and motorcar industry, fluid mechanics became an applied science with many chal-
lenges to meet. Therefore the understanding of real flows at moderate to large Reynolds numbers became an urgent matter. 
Reynolds [1] himself set the stage by studying the experimental transition to turbulence in pipe flows. This led him to 
introduce what is now called the Reynolds number. He tried to show that the transition occurs at a well defined value of 
this number, a point hard to make in this case, because the transition is subcritical. As reported below, Reynolds, although 
he was not by far clear in his statement, seemed to make a distinction between subcritical and supercritical bifurcation. 
Moreover, he was well aware that fluctuations, if of sufficient amplitude, change the mean structure of the flow, introducing 
so a feedback between this mean flow (if driven by a constant pressure gradient), its Reynolds number, and the turbulent 
fluctuations. The Reynolds equation relates the mean velocity, the pressure and the Reynolds stress (which can be seen 
as the contribution of the turbulent fluctuations to the flux of momentum, another name for the stress—this has been 
rediscovered several times since in various forms.)

Somehow, Reynolds was first to consider the problem of the sub- or supercritical character of the bifurcation to turbu-
lence in parallel flows. After reporting his experiments of transition to turbulence in a pipe he gave a hint that it could not 
be the result of a linear instability. He asked the question (the last one in a list of six): “Did the eddies make their first 
appearance as small and then increase gradually with the velocity, or did they come suddenly?”

His (unclear) answer was:
“The bearing of the last query may not be obvious; but, as will appear in the sequel, its importance was such that in 

spite of satisfactory answers to all the other queries, a negative answer to this in respect of one particular class of motion 
led to the reconsideration of the supposed cause of instability and eventually to the discovery of the instability caused by 
fluid friction.”

2. From Reynolds to Landau: subcritical vs supercritical bifurcation

After Reynolds’ work, many experimental studies put in evidence that parallel flows bifurcate to turbulence via a regime, 
at intermediate Reynolds number, such that turbulence is localised in well-separated domains having received various 
names. In careful studies Emmons [7] showed that a Blasius boundary layer shows beyond a range of Reynolds number 
what are called now “Emmons spots” growing with a well-defined arrowhead shape surrounded by laminar flow and tur-
bulent inside (although with recognisable roll structures of axis in the streamwise direction).

This coexistence of laminar and turbulent domains (turbulent flashes in the words of Reynolds) was unexplained at 
the time of those observations. Such a coexistence can be stationary, in the Taylor–Couette case, for instance. In a paper 
presented at a Conference at Los Alamos in 1985 [8], I related this coexistence to the subcritical character of the bifurcation.

As this notion of a subcritical bifurcation is going to be central for the developments to come, it should be made more 
precise. A supercritical instability is an instability growing slowly near a threshold and saturating at a finite amplitude 
tending to zero as the threshold is reached from above, supposing that above the threshold there is a linear instability 
and none below. That the instability is sub- or supercritical depends on nonlinear effects. Qualitatively, “subcritical” means 
that the growth of the amplitude of the fluctuations tends to increase even more their rate of growth. On the contrary 
fluctuations of finite, even small amplitude have a negative effect on the rate of growth in the case of a “supercritical” 
bifurcation. However this addition of a nonlinear rate of instability to an already linearly unstable fluctuation does not 
exhaust all possibilities, because there are examples of flows that remain linearly stable for all values of the Reynolds 
number, like plane Couette flow or pipe Poiseuille flow. Nevertheless this kind of flow is subcritically unstable, like flows 
becoming linearly unstable at a given Reynolds number, this being the case of the plane Poiseuille flow. They can be 
considered as subcritical because for Reynolds number above a certain threshold, a turbulent state can exist with steady 
statistical properties, whereas below this threshold, only the laminar state can maintain itself forever. Somehow, in this case, 
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