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The refined theory of transversely isotropic beam is analyzed. Based on the transversely
isotropic thermoporoelastic theory, a refined theory for bending beam is derived using the
general solution and the Lur’e method without ad hoc assumptions. First, the expressions
for all of the displacements and stress components of a transversely isotropic thermoporo-
elastic beam were obtained in terms of four functions with one independent variable.
Second, using homogeneous boundary condition, the refined equation and the decomposed
form of the thermoporoelastic beam were obtained. Finally, the approximate equations
and solutions for the beam under general anti-symmetric loadings were derived from the
refined theory.
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1. Introduction

The consolidation theory of porosity media was extended from one to three dimensions by Biot [1], and the consolidation
theory was improved more perfectly. Huang [2] and others gave the analytical solution of pore water pressure, stress and
displacement of the two-dimensional consolidation problem [3–6].

Without ad hoc assumptions, Cheng [7] developed the refined theory for bending of isotropic plates directly from the
three-dimensional theory of elasticity by using the solution of the plates and Lur’e method [8]. Under homogeneous bound-
ary conditions, the refined theory of plate is exact and consists of three parts: the bi-harmonic equation, the shear equation
and the transcendental equation. A parallel development on the plate theory was constructed by Gregory. In 1992, Gregory
[9] provided a rigorous proof of the decomposed form of isotropic plates. The two-plate theory has been extended to the
study of various material boards, such as transversely isotropic [10], thermoelastic [11], magnetoelastic [12], and piezoelec-
tric plates [13]. In 2005, the connection between the refined theory and the decomposed theorem of an isotropic elastic
plate was analyzed by Zhao and Wang [14]. The equivalence of the refined theory and the decomposed theorem of an
isotropic plate were obtained. In 2007, the refined theory of thermoelastic rectangular plates [15] and thermoelastic plane
problems [16] were obtained by Gao and Zhao.

In this paper, the research into the refined theory is extended to the study of the transversely isotropic thermoporoelastic
beam. In the next section, the basic equations and notations are stated. In Section 3, the decomposed theorem under
homogeneous boundary conditions is studied. The decomposed form is consistent with the interior state, the transcendental
state, the pore pressure state and the thermal state. In Sections 4, 5, the approximate equations and the solutions for the
beam under general anti-symmetric loadings are derived directly from the refined theory.
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2. Equations and notations

A transversely isotropic thermoporoelastic beam occupies the region:

Ω = {
(x, z)

∣∣ x ∈ D, |z|� t
}

(1)

where D is the cross-section of the beam, which has thickness 2t , the z-axis being perpendicular to the isotropic plane
of the medium in a Cartesian system (x, z). The constitutive equations for the transversely isotropic body in the two-
dimensional linear elasticity are described to be:

σxx = C11
∂u

∂x
+ C13

∂ w

∂z
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∂u
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(
∂ w

∂x
+ ∂u

∂z

)
, P = M

(
ξ − α1

∂u

∂x
− α3

∂ w

∂z
+ βm T

)
(2)

where σxx , σzz are the normal stresses, σzx is the shear stress, and u and w are displacements in the respective Cartesian
directions, P and T are changes in the pore pressure and temperature. ξ is the variation of the fluid content. Cij , α1 (α3, M)
and β1 (β3, βm) are the elastic moduli, Biot’s effective stress coefficients and thermal constants. It is noted that Cij , αi, βi
can be expressed in terms of engineering contents such as Young’s moduli, Poisson’s ratio, etc.

The general solution of thermoporoelastic beam has the following expression [17]:
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(3)

where:

μi1 = si
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(4)

a0 = C33C44, b0 = C11C33 − C2
13 − 2C13C44, c0 = C11C44

a1 = (C13 + C44)(κ33β3 + λ33α3) − C33(κ33β1 + λ33α1)

b1 = (C13 + C44)(κ11β3 + λ11α3) − C44(κ33β1 + λ33α1) − C33(κ11β1 + λ11α1)

c1 = −C44(κ11β1 + λ11α1), a2 = C44(κ33β3 + λ33α3)

b2 = C11(κ33β3 + λ33α3) + C44(κ11β3 + λ11α3) − (C13 + C44)(κ33β1 + λ33α1)

c2 = C11(κ11β3 + λ11α3) − (C13 + C44)(κ11β1 + λ11α1) (5)

in which κ11 (κ33) and λ11 (λ33) are the coefficients of permeability and the thermal conductivity, and where ψi (i =
1,2,3,4) are the harmonic functions that satisfy the following equation:

(
∂2

∂x2
+ ∂2

s2
i ∂z2

)
ψi = 0 (i = 1,2,3,4) (6)

where s2
3 = κ11/κ33, s2

4 = λ11/λ33, s2
1 and s2

2 are two roots of the following equation (set s2
1 �= s2

2):

a0s4 − b0s2 + c0 = 0 (7)

Lekhnitskii [18] proved that the numbers s1 and s2 for any transversely isotropic body can be real or complex (with a
real part different from zero), but cannot be purely imaginary.

Since the stresses in the bending beam are anti-symmetrical about mid-plane z = 0, this induces that u and v are the
odd function about z, and w is the even function about z. Using the Lur’e method [8], we have the following solutions
of (7):

ψi = sin(zsi∂x)

si∂x
gi(x) (i = 1,2,3,4) (8)

in which gi (i = 1,2,3,4) are unknown functions of x, yet to be determined, and ∂x = ∂/∂x, and:
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