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The simulation of the hydro-mechanical behavior of unsaturated soils is becoming a subject
of major importance in soil mechanics. However, unlike the laws governing the behavior
of saturated soils, those used to describe the behavior of unsaturated soils still lack
of simplicity for common engineering practice. This is why it is important to reconcile
saturated and unsaturated soil mechanics and establish a unified theory. In this paper, we
use the same strength equation of saturated soils in unsaturated materials and verify that
a single failure surface is obtained for any value of suction in wetting and drying paths.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Shear strength is one of the most important engineering properties of soils. This is because most civil engineering works
require the knowledge of the soil resistance to design safe structures.

The shear strength of soils can be measured in equipments that apply three-dimensional pressures (directions 1, 2 and
3). In this case, the triaxial cell or the true triaxial apparatus can be used. When different pressures are applied in two or
three directions, they cause shear stresses that are supported by the internal structure of soils. When these acting stresses
exceed the strength of the material, it is said that the soil fails. In the case of saturated materials, this failure state is
identified through the final deviator stress (qf = σ1 − σ3) and the final mean effective stress (p′ = (σ ′

1 + 2σ ′
3)/3) where

the effective stress (σ ′) is defined as the difference between the total stress and the pore pressure. If we plot these values
(p′

f,qf) under different confining stresses for a saturated soil, they exhibit a single failure line with a slope called M . In this
sense, the failure deviator stress is equal to Mp′

f and represents the maximum internal resistance in a failure plane when
the soil sample is subjected to external loads:

qf = Mp′
f (1)

In contrast, the shear strength in unsaturated soils can be predicted using two different approaches. The first one is
based on the independent stress state variables and considers that the strength due to mechanical loading is independent
of the strength due to suction [1]. The variables used to establish the governing equations in this approach are the mean net
stress pnet = (σ1 + 2σ3)/3, the deviator stress q = σ1 −σ3 and suction s. Matric suction s = ua − uw represents the pressure
difference of the fluids in the soil pores: air (ua) and water (uw). Suction is included as a third variable in order to take

* Corresponding author. Tel.: +52 442 192 1200x6031; fax: +52 442 192 1200x6005.
E-mail address: hiramarroyo@hotmail.com (H. Arroyo).

1631-0721/$ – see front matter © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
http://dx.doi.org/10.1016/j.crme.2013.10.005

http://dx.doi.org/10.1016/j.crme.2013.10.005
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:hiramarroyo@hotmail.com
http://dx.doi.org/10.1016/j.crme.2013.10.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crme.2013.10.005&domain=pdf


728 H. Arroyo et al. / C. R. Mecanique 341 (2013) 727–742

into account correctly the effect of moisture on the strength of the material. This approach considers the stress state as a
function of these three variables f = f (pnet,q, s).

The second approach is similar to the saturated case, where the strength of the material is linked to the shear stress and
the mean effective stress. Models written in terms of effective stress couple the mechanical and hydraulic behavior of the
material in this single variable. For the case of unsaturated soils, the most popular effective stress relationship is Bishop’s
effective stress equation, which in tensorial form is written as:

σ ′
i j = σ t

i j − uaδi j + χ sδi j (2)

where σ t
i j represents the total stress applied at the boundaries of the soil, δi j is the Kronecker delta and χ is Bishop’s

parameter, closely related to the degree of saturation of the soil [2]. More recent studies relate this parameter to saturated,
dry, and unsaturated fractions of soil [3].

When relationship (2) is multiplied by the Kronecker delta, the mean effective stress is expressed in terms of the mean
net stress (pnet) and suction:

p′ = pnet + χ s (3)

Several researchers have made attempts to establish analytical equations to obtain parameter χ . The most simplistic of
them assumes that it is equal to the degree of saturation of the material (χ = Sr).

This paper focuses on the prediction of the shear strength of unsaturated soils using the effective stress concept as it
shows some advantages when compared to the independent stress state variables approach. Among other advantages, effec-
tive stress models require less constitutive parameters to be formulated. Furthermore, in order to calibrate these parameters,
more simplistic and economical laboratory tests are required [4]. In this paper, we only consider the effect of matric suction
and neglect those produced by other types of suction.

A model to predict the strength of unsaturated soils is proposed herein. First, an analytical equation to determine Bishop’s
parameter based on the analysis of the equilibrium of the soil phases (solid, liquid, gas) is presented. Then it is demonstrated
that it can be applied to any type of soil. Later, a probabilistic porous model is developed to generate the parameters
required to obtain the effective stresses in unsaturated materials. Additionally, proper details regarding the calculation of
the variables that intervene in the effective stress equation proposed herein are provided. Finally, some numerical and
experimental results comparisons are presented.

2. Bishop’s parameter determination

Fig. 1(a) outlines a porous structure composed of solids and pores. These pores can be of two different types: sites and
bonds. The sites contain the largest part of the voids and can be subdivided in macropores and mesopores. The bonds or
throats are the elements that interconnect the sites.

Consider that a soil is initially subjected to a high suction and all pores are dry. If suction is reduced by steps, at certain
point, water intrudes into the system. Initially, only the smaller bonds located at the boundaries of the sample saturate.
With further reductions in suction, other larger elements start to saturate. Fig. 1(b) shows the distribution of water in the
system at a certain stage of the wetting process. It can be observed that the system is now composed of pores that may be
either dry or saturated (both sites and bonds). Additionally, it can be observed that solids can be completely surrounded by
either saturated or dry pores, or even they can be surrounded by a combination of them. For example, solid 6 in Fig. 1(b)
is completely surrounded by dry pores and in that sense it is called a dry solid. Instead, solids 1 and 3 are completely
surrounded by saturated pores and therefore they are called saturated solids. Finally, solids 2, 4 and 5 are surrounded by a
combination of saturated and dry pores, then they are called unsaturated solids. Notice that the definitions of the different
fractions involve both solids and pores and not the pores alone. The total volume of solids added by the volume of their
surrounding pores forms the volume of the fraction, be it saturated, dry, or unsaturated.

It will be seen later that the value of Bishop’s parameter as proposed herein depends on the quantification of the
different fractions. Because the saturated and the dry fractions do not share common elements, these two fractions are the
first ones to be quantified. Then, the unsaturated fraction is quantified from the difference with the total volume of bonds,
sites and solids. In this form we ensure that neither element is counted twice.

Let us define the saturated fraction f s as the ratio between the saturated volume (saturated solids and its surrounding
pores) and the total volume of the sample V ; the saturated ( f u) and the dry fraction ( f d) are defined in the same way:
the unsaturated volume divided by the total volume and, the dry volume divided by the total volume, respectively.

f s = (
V s
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In this way, the condition f s + f d + f u = 1 must be satisfied at any value of the degree of saturation. Variables in Eq. (4)
show subscripts that refer to either solids (SOL), sites (S), or bonds (B). On the other hand, superscripts indicate whether
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