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statique de polycristaux poreux parfaitement plastiques. On en dérive des résultats ana-
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1. Introduction

Several homogenization techniques are already available to bound the plastic strength of polycrystalline solids. The
simplest bounds are the upper bound of Taylor [1] and the lower bound of Reuss [2], which depend on one-point mi-
crostructural statistics only. Sharper bounds incorporating higher-order statistics were first derived by Dendievel et al. [3]
and deBotton and Ponte Castafieda [4] making use of the idea of a linear-comparison medium that is optimally selected
via suitably designed variational principles. In particular, the technique of deBotton and Ponte Castafieda allows the use of
any linear homogenization approach, such as the Hashin-Shtrikman or the self-consistent approach, to generate the corre-
sponding results for nonlinear plastic polycrystals. Application of these linear-comparison techniques to various classes of
fully dense polycrystalline solids have been pursued by Willis [5], Nebozhyn et al. [6,7], Liu et al. [8], and Liu and Ponte
Castafieda [9]. In all cases, the nonlinear Hashin-Shtrikman bounds are very close to the Taylor bound, but the nonlinear
self-consistent bounds can be quite sharper, especially for low-symmetry solids. This is in part due to the fact that the
Hashin-Shtrikman results bound the entire class of polycrystals with prescribed one- and two-point statistics, while the
self-consistent results bound the subclass of polycrystals that realize the linear self-consistent estimate.

Idiart and Ponte Castafieda [10,11] later showed that the linear-comparison technique of deBotton and Ponte Castafieda
[4] makes implicit use of a relaxation in the variational scheme that weakens the resulting bounds. Eliminating this re-
laxation leads to sharper bounds at the expense of increasing the computational complexity. The impact of the relaxation
in the context of various cubic and hexagonal systems has been recently assessed by Idiart [12]. Modest differences be-
tween relaxed and non-relaxed bounds were observed, with the largest amounts corresponding to materials with deficient
slip systems. Given that these are materials with a strong heterogeneity contrast, the question arises as to whether larger
differences will appear in the context of (two-phase) polycrystalline voided solids where the heterogeneity contrast is in-
finitely strong. This Note reports linear-comparison bounds of the Hashin-Shtrikman and self-consistent types for the plastic
strength of polycrystalline voided solids exhibiting overall isotropic symmetry and subjected to purely hydrostatic loadings.
These conditions are of particular theoretical interest since they usually exacerbate differences between theories and, fur-
thermore, allow analytical treatment. It turns out that the impact of the relaxation on the bounds can be significantly larger
than that observed in fully dense polycrystals. So much so that, quite surprisingly, relaxed self-consistent bounds are found
to be weaker than non-relaxed Hashin-Shtrikman bounds for some of the material systems considered. We conclude the
Note by discussing some implications for the use of linear-comparison techniques in the context of voided polycrystals.

2. The polycrystalline solid model

Polycrystals are taken here as random aggregates of perfectly bonded single crystals (i.e., grains) and voids. Following
Lebensohn et al. [13], individual grains and voids are assumed to be of a similar size, much smaller than the specimen size
and the scale of variation of the applied loads. Grain orientations are characterized by rotation tensors Q) (r=1,..., N).
All grains with a given orientation Q™ occupy a disconnected domain £2” and are collectively referred to as ‘phase’ r.
Similarly, all voids occupy a disconnected domain §2® and are collectively referred to as ‘phase’ 0.

Grains are assumed to deform by multi-glide along K slip systems following a rigid-perfectly plastic response. In accor-
dance with standard crystal plasticity theory, their strength domains are characterized in terms of a convex set:

P={o:l0-pel <t k=1,....K} (1)

where rék) > 0 is the yield strength of the kth slip system and:

1
Ko = E(ﬂ(k) ® M) + Mgy @ N)) (2)

are second-order Schmid tensors with ny, and m, denoting the unit vectors normal to the slip plane and along the slip
direction of the kth system in a ‘reference’ crystal, respectively. Note that the Schmid tensors are traceless and therefore the
strength domains (1) are insensitive to hydrostatic stresses. The set P is a convex polyhedron formed by the set of planes
(or facets) whose equations are given by the equalities in (1). The set of vertices of P is denoted as P. The strength domain

P® of phase r is given by a set similarly defined in terms of rotated Schmid tensors ;LE,:)) = (”T;L(k)Q(”. The boundary

daP™ of the set P") represents the yield surface of phase r. The voided phase (r = 0), on the other hand, cannot sustain
stress. We characterize this phase as a family of ‘grains’ with P(© = {0}.

The macroscopic plastic strength of the polycrystalline aggregate corresponds to the set of stress states that can produce
macroscopic plastic flow. By homogenizing the relevant field equations, Suquet [14]| and Bouchitté and Suquet [15] showed
that the macroscopic plastic strength can be characterized by an effective strength domain defined as:

P={6:30(x)eS@)ando(x) e P”in2", r=0,...,N} (3)

where o denote the macroscopic stress states, o (x) are the underlying microscopic stress fields, and S(o) denotes the set
of statically admissible stress fields with volume average o. The effective strength domain depends on the crystallographic
texture of the polycrystal through the set of orientations Q, and on the morphological texture and porosity through the
ensemble averages of the characteristic functions of the domains £2(. The boundary 3P of the set P represents the effective
yield surface of the polycrystalline voided solid.
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