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A three-dimensional solution of the mixed boundary value problem posed in Potential
Theory is proposed. The support of the Neumann condition is conformally mapped onto
a unit disk. On that disk, the solution is broken down as Fourier series of azimuthal
angle and linear combinations of known functions of the radial coordinate. It is shown
that the whole problem reduces highly nonlinear equations for the coefficients of the
mapping function. The present method of solution is to be applied to hydrodynamic impact
problem.
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1. Introduction

A mixed Neumann–Dirichlet boundary value problem is posed in Potential Theory. The Laplace equation is solved in
a half three-dimensional space. This configuration is relevant in several domains of the physics; among them a charged disk
in electrostatics, or the hydrodynamic impact problem known as the linearized Wagner problem [1]. This latter problem
is even more complicated since the line which bounds the two supports of the two boundary conditions is a part of the
solution.

We propose here a new mathematical solution of that Wagner problem. A semi-analytical solution of the problem is
hence established as a series of known functions whose properties are checked and analyzed. The proposed method has
not been studied for practical cases yet. However some physical properties of the solution, like hydrodynamic loads are
formulated. It is also expected that the present solution will help to propose new criteria regarding the stability of the
solution in connection with the regularity of the shape at the initial contact point.

2. Method of solution

An illustration of the linearized three-dimensional Wagner problem is shown in Fig. 1. A Neumann condition is pre-
scribed on a closed area D . A homogeneous Dirichlet condition is prescribed on the complementary surface F . Following
Korobkin [2] and Howison et al. [3] among others, the corresponding boundary value problem is formulated in terms of the
displacement potential φ as follows:⎧⎪⎪⎨

⎪⎪⎩

φ,xx + φ,yy + φ,zz = 0, z < 0
φ = 0, z = 0, (x, y) ∈ F
φ,z = f �(x, y, t), z = 0, (x, y) ∈ D

φ → 0,
(
x2 + y2 + z2) → ∞

(1)
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Fig. 1. Illustration of the linearized three-dimensional Wagner problem.

where f � is a regular enough function of the Cartesian coordinates (x, y) and time t . By using a theorem by Zaremba [4]
applied to the vertical displacement V = −φ,z , it is shown that the field V is induced by a unique distribution of sources
over the surface D . The source intensities identify with the planar Laplacian �2φ = φ,xx + φ,yy = S(x, y, t). In addition
V (x, y, z, t) is continuous throughout the fluid domain z � 0 including its boundary z = 0 and the contact line Γ . After
some algebra of the integral representation of field V , the following integral equation is obtained (see Korobkin [2]):

1

2π

∫
D

S(x0, y0, t)dx0 dy0√
(x − x0)2 + (y − y0)2

= f �(x, y, t) (2)

Additional conditions are prescribed along the contact line. This condition implies that not only the displacement potential
φ(x, y,0, t) and the vertical displacement φ,z(x, y,0, t) but also the horizontal displacements φ,x(x, y,0, t) and φ,y(x, y,0, t)
are continuous through Γ . Those conditions are necessary in order to determine the contact line Γ which is unknown.

By using the Riemann mapping theorem (see Nehari [5, pp. 173–174]), we introduce the conformal mapping function g
which turns the surface D onto a unit disk C1

Z = x + iy = g(ω), ω = ξ + iη (3)

where Z denotes a complex number in the physical plane z = 0. As function g is conformal (hence analytical), its derivative
never vanishes and the following formula is helpful to express the Green function of the problem.

1√
(x − x0)2 + (y − y0)2

= 1

|g(ω) − g(ω0)| = 1

|g′(ω)|
1

|ω − ω0| + T (ω,ω0)

|ω − ω0| (4)

The function T (ω,ω0) is regular since the leading order term behaves as O (|ω − ω0|). By substituting (4) in the integral
equation (2), it can be shown that S is a solution of

1

2π

∫
C1

S(ω0)dσ0

|ω − ω0| = Q (ρ,α, t), φ = 0, and φ,n = 0, at |ω| = 1 (5)

where the right-hand side Q depends on the solution S , but it is regular enough all over D . The integral equation in
combination with boundary conditions (5) proves that φ is the solution of the following boundary value problem now
posed on the unit disk

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ,ρ2 + 1

ρ
φ,ρ + φ,z̃2 + 1

ρ2
φ,α2 = 0, z̃ < 0

φ = 0, z̃ = 0, ρ > 1
φ,z̃ = Q (ρ,α, t), z̃ = 0, 0 < ρ < 1

φ → 0,
(
z̃2 + ρ2 → ∞)

(6)

where the vertical coordinate z̃ is formal, its connection with the original variable z is complicated and is not discussed
here. The method for solving the problem (6) is described by Korobkin and Scolan in [6]. Provided that Q has a Fourier
transform of the azimuthal variable α and a polynomial expansion with ρ , say

Q (ρ,α, t) = �
∞∑

n=0

∞∑
k=0

q(n)

k ρkeinα, ρ ∈ [0 : 1] (7)

after some algebra, it is shown that the displacement potential φ reads

φ(ρ,α,0, t) = 2

π
�

∞∑
n=0

ρn
∞∑

k=0

q(n)

k zk+n
[√

1 − ρ2 + (k − n)Dk−n(ρ)
]
einα (8)



Download	English	Version:

https://daneshyari.com/en/article/823830

Download	Persian	Version:

https://daneshyari.com/article/823830

Daneshyari.com

https://daneshyari.com/en/article/823830
https://daneshyari.com/article/823830
https://daneshyari.com/

